
Econometrica, Vol. 92, No. 6 (November, 2024), 2027–2067

ADAPTIVE, RATE-OPTIMAL HYPOTHESIS TESTING IN NONPARAMETRIC
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We propose a new adaptive hypothesis test for inequality (e.g., monotonicity, convex-
ity) and equality (e.g., parametric, semiparametric) restrictions on a structural function
in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on
a modified leave-one-out sample analog of a quadratic distance between the restricted
and unrestricted sieve two-stage least squares estimators. We provide computation-
ally simple, data-driven choices of sieve tuning parameters and Bonferroni adjusted
chi-squared critical values. Our test adapts to the unknown smoothness of alternative
functions in the presence of unknown degree of endogeneity and unknown strength of
the instruments. It attains the adaptive minimax rate of testing in L2. That is, the sum
of the supremum of type I error over the composite null and the supremum of type
II error over nonparametric alternative models cannot be minimized by any other tests
for NPIV models of unknown regularities. Confidence sets inL2 are obtained by invert-
ing the adaptive test. Simulations confirm that, across different strength of instruments
and sample sizes, our adaptive test controls size and its finite-sample power greatly ex-
ceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV
models. Empirical applications to test for shape restrictions of differentiated products
demand and of Engel curves are presented.

KEYWORDS: Sieve two-stage least squares, shape restrictions, Hilbert projection
onto closed convex sets, composite hypothesis, nonparametric alternatives, minimax
rate of testing, adaptive hypothesis testing, power, random exponential scan, sieve U-
statistics.

1. INTRODUCTION

IN THIS PAPER, WE PROPOSE COMPUTATIONALLY SIMPLE, optimal hypothesis testing in a
nonparametric instrumental variables (NPIV) model. The maintained assumption is that
there is a nonparametric structural function h satisfying the NPIV model

E
[
Y − h(X)|W

]= 0� (1.1)

where X is a dx-dimensional vector of possibly endogenous regressors, W is a dw-
dimensional vector of conditional (instrumental) variables (with dw ≥ dx), and the joint
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distribution of (Y�X�W ) is unspecified beyond (1.1). With the danger of abusing termi-
nology, we call a function h satisfying model (1.1) a NPIV function. We are interested
in testing a (composite) null hypothesis that a NPIV function h satisfies some simpli-
fying economic restrictions, such as parametric or semiparametric equality restrictions
or inequality restrictions (e.g., nonnegativity, monotonicity, convexity, supermodularity,
quasi-concavity). Our new test builds on a simple data-driven choice of tuning parameter
that ensures asymptotic size control and non-trivial power uniformly against a large class
of nonparametric alternatives.

Let L2(X) denote the space of square integrable function of X . Our new test is de-
signed to test a composite null hypothesis H0 that is a closed, convex strict subset ofL2(X)
satisfying the NPIV model (1.1). Before presenting the theoretical properties of our new
test, we derive the minimax rate of testing rn in L2, which is the fastest rate of separation
in root-mean squared distance between the null hypothesis H0 and the class of nonpara-
metric alternative NPIV functions H1(δrn) that enables consistent testing uniformly over
the latter, with the rate rn shrinking to zero as the sample size n goes to infinity and δ > 0
being a finite constant independent of n. We establish the minimax result in two steps:
First, we derive, uniformly over all possible tests, a lower bound for the sum of the supre-
mum of type I error over H0 and the supremum of type II error over H1(δrn) separated
from the null hypothesis by a rate rn. Thus, there exists no other test that provides a bet-
ter performance with respect to the sum of those errors. Second, we propose a test whose
sum of the type I and the type II errors is bounded from above (by the nominal level) at
the same separation rate rn. This test is based on a modified leave-one-out sample ana-
log of a quadratic distance between the restricted and unrestricted sieve NPIV (i.e., sieve
two-stage least squares) estimators of h. The test is shown to attain the minimax rate of
testing rn when the sieve dimension is chosen optimally according to the smoothness of
the nonparametric alternative functions and the degree of the ill-posedness of the NPIV
model (that depends on the smoothness of the conditional density of X given W ). This
test is called minimax rate-optimal (with known model regularities).

In practice, the smoothness of the nonparametric alternative functions and the degree
of the ill-posedness of the NPIV model are both unknown. Our new test is a data-driven
version of the minimax rate-optimal test that adapts to the unknown smoothness of the
nonparametric alternative NPIV functions in the presence of the unknown degree of the
ill-posedness. Our test rejects the null hypothesis as soon as there is a sieve dimension
(say the smallest sieve dimension) in an estimated index set such that the corresponding
normalized leave-one-out quadratic distance estimator exceeds 1; and fails to reject the
null otherwise. The normalization builds on Bonferroni corrected chi-squared critical val-
ues. The simple Bonferroni correction is computed using the cardinality of the estimated
index set, which is in turn determined by a random exponential scan (RES) procedure
that automatically takes into account the unknown degree of ill-posedness.

We show that our new test attains the minimax rate of testing in L2 for severely ill-
posed NPIV models, and is within a

√
log log(n) multiplicative factor of the minimax rate

of testing for mildly ill-posed NPIV models. This extra
√

log log(n) term is the necessary
price to pay for adaptivity to unknown smoothness of nonparametric alternative func-
tions.1 A key technical part to establish our adaptive minimax rate of testing in L2 is to
derive a sharp upper bound on the convergence rate of a leave-one-out sieve estimator of
a quadratic functional of a NPIV function, which is proved using an exponential inequality
for U-statistics with increasing dimensions. We show that our adaptive test has asymptotic

1This is needed even for adaptive minimax hypothesis testing in nonparametric regressions (without endo-
geneity); see Spokoiny (1996), Horowitz and Spokoiny (2001), and Guerre and Lavergne (2005).
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2029

size control under a composite null by deriving a tight, slowly divergent lower bound for
Bonferroni corrected chi-squared critical value. By inverting our adaptive tests, we obtain
L2 confidence sets on restricted NPIV functions. These confidence sets are free of addi-
tional choices of tuning parameters. The adaptive minimax rate of testing determines the
L2 radius of the confidence sets.

Our adaptive minimax L2 rate of testing decreases to zero strictly faster than the op-
timal L2 rate of estimation (with known smoothness) for mildly ill-posed NPIV models,
and coincides with the optimal L2 rate of estimation for severely ill-posed NPIV mod-
els. In the existing literature on testing for parametric, semiparametric, or shape NPIV
restrictions against nonparametric alternatives, all of the non-adaptive tests achieve their
asymptotic size controls by choosing some deterministic tuning parameters such that the
L2 estimation bias for h is of a smaller order than the L2 standard deviation (aka, under-
smoothing), which leads to a L2 separation rate of testing shrinking to zero strictly slower
than the optimal L2 rate of estimation, and hence strictly slower than our adaptive mini-
max L2 rate of testing for both mildly and severely ill-posed NPIV models. In particular,
among all of the existing NPIV tests that have asymptotic size controls, our new adap-
tive test is asymptotically more powerful, uniformly over a larger class of nonparametric
alternatives.

In Monte Carlo simulations, we analyze the finite-sample properties of our adaptive
test for the null of monotonicity or a parametric hypothesis using various simulation de-
signs from others’ work. The simulations reveal the following patterns of our adaptive
test in comparison to recent non-adaptive tests: First, while the competing tests can be
over-sized at the boundary of the null hypothesis, our test delivers adequate size control
under different composite null hypotheses, across different sample sizes, and for varying
strengths of instruments. Second, our test is as powerful as the competing tests when al-
ternative functions are relatively simple, and is more powerful when alternatives are more
nonlinear/complex. The great power gains of our adaptive test are present even for rel-
atively weak strength of instruments or small sample sizes. These findings highlight the
importance of our data-driven choice of the sieve dimension to simultaneously ensure
size control and powerful performance uniformly against a larger class of nonparametric
alternative NPIV functions. Finally, unlike many NPIV tests using bootstrapped critical
values, our powerful adaptive test uses simple Bonferroni corrected chi-squared critical
values and hence is fast to compute.

We present two empirical applications of our adaptive test. The first is to test the con-
nected substitutes shape restrictions in demand for differential products using market
level data (e.g., Berry and Haile (2014)). The second is to test for monotonicity, convex-
ity, and parametric forms in Engel curves (e.g., Blundell, Chen, and Kristensen (2007)).

There is a growing number of papers on testing equality and inequality (shape) restric-
tions in NPIV type models. See, for example, Horowitz (2006), Santos (2012), Breunig
(2015), Chen and Pouzo (2015), Chernozhukov, Newey, and Santos (2015), Zhu (2020),
Fang and Seo (2021) and references therein.2 Most of these papers assume that some
non-random sequences of key tuning (regularization) parameters satisfy some theoretical
rate conditions with known smoothness of NPIV functions. None of the published work
achieves the adaptive minimax L2 rate of testing for NPIV models. Our paper makes an
important contribution by providing the first data-driven choice of a key tuning parameter

2There are also papers on NPIV estimation by directly imposing shape restrictions; see, for example,
Horowitz and Lee (2012), Blundell, Horowitz, and Parey (2017), Chetverikov and Wilhelm (2017), and Frey-
berger and Reeves (2019). See Chetverikov, Santos, and Shaikh (2018) for a review on shape restrictions and
Chetverikov (2019) for adaptive kernel testing for monotonicity of a regression without endogeneity.
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2030 C. BREUNIG AND X. CHEN

that leads to a new minimax rate-adaptive and powerful test for equality and inequality
(shape) restrictions in NPIV models. Our paper also complements a concurrent work
by Chen, Christensen, and Kankanala (2024), which constructs honest and near-adaptive
uniform confidence bands for a NPIV function and its partial derivatives using a boot-
strapped Lepski’s procedure (in sup-norm).

The rest of the paper is as follows. Section 2 describes our new hypothesis test. Section 3
establishes the oracle minimax optimal rate of testing. Section 4 shows that this minimax
optimal rate is attained (within a

√
log log(n) term) by our new test. Section 5 presents

simulation studies and Section 6 provides empirical illustrations. Appendices A and B
present proofs of Theorems 3.1, 3.2, 4.1, and 4.2. The Supplemental Material (Breunig
and Chen (2024)) includes Appendix C for additional simulation results, Appendix D for
proofs of Corollaries 4.1 and 4.2, and Appendix E for additional lemmas and their proofs.

Basic Notation

For a random variableX , we let L2(X) denote the Hilbert space of real-valued measur-
able functions φ of X with finite second moment, with the norm ‖φ‖L2(X) :=√

E[φ2(X)]
and the inner product 〈·� ·〉X . Let ‖φ‖∞ := supx|φ(x)| be the sup-norm and L∞ = {φ :
‖φ‖∞ <∞}. For a matrix M , let M ′ be its transpose and M− be its generalized inverse.

For a J× J matrixM = (Mjl)1≤j�l≤J , we define its Frobenius norm as ‖M‖F =
√∑J

j�l=1M
2
jl.

Let ‖ · ‖ be the Euclidean norm when applied to a vector and the operator norm induced
by the Euclidean norm when applied to a matrix. For sequences of positive real numbers
{an} and {bn}, we use the notation an � bn if lim supn→∞ an/bn <∞, and an ∼ bn if an � bn
and bn � an.

2. PREVIEW OF THE ADAPTIVE HYPOTHESIS TESTING

We first introduce the null and the alternative hypotheses as well as the concept of
minimax rate of testing in Section 2.1. We then describe our new rate-adaptive test for
NPIV type models in Section 2.2.

2.1. Null Hypotheses and Nonparametric Alternatives

Let H denote a closed subset of L2(X) that captures some unknown degree of smooth-
ness. Let {(Yi�Xi�Wi)}ni=1 denote a random sample from the distribution Ph of (Y�X�W )
satisfying the NPIV model (2.1):

Y = h(X) +U� where Eh[U|W ] = 0 and h ∈H� (2.1)

Here, Eh denotes the (conditional) expectation under Ph. In this paper, we assume that
the joint distribution of (X�W ) does not depend on h ∈ H and that the conditional den-
sity of X given W is continuous on its support. The conditional expectation operator
T : L2(X) �→ L2(W ) given by Th(w) := E[h(X)|W = w] is uniquely defined by the con-
ditional density ofX given W and hence does not depend on h. We can then equivalently
express the NPIV model (2.1) as Eh[Y|W ] = (Th)(W ) for h ∈ H. For ease of presenta-
tion, we mainly consider a nonparametric class of functions as the maintained hypothesis
H. Nevertheless, our theoretical results allow for semiparametric structures H as well
(see Section 4.2).
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2031

Let H0 denote the null class of functions in H that satisfies a conjectured restriction in
(2.1). We assume that H0 is a nonempty, closed and convex, strict subset of H. For any h ∈
H, there is a unique element�H0h ∈H0 such that infφ∈H0 ‖h−φ‖L2(X) = ‖h−�H0h‖L2(X)

(by the Hilbert projection theorem). In addition to a simple null H0 ={h0} (with a known
function h0 ∈ H), we allow for general parametric, semi/nonparametric equality and in-
equality composite null restrictions. We present two examples of composite null restric-
tions below (see Section 4.2 for additional examples).

EXAMPLE 2.1—Nonparametric shape restrictions: H0 can be a closed convex subset
of H determined by inequality restrictions such that H0 = {h ∈ H : ∂lh ≥ 0}, where ∂lh
denotes the lth partial derivative of h with respect to components of x. This allows for
testing nonnegativity (l = 0), monotonicity (l = 1), or convexity (l = 2). We can also
test for supermodularity restrictions on NPIV functions corresponding to H0 = {h ∈ H :
∂2h/(∂x1∂x2) ≥ 0}. Our framework also allows for testing these restricted function classes
simultaneously since intersections of these are again closed convex subsets of H.

EXAMPLE 2.2—Semiparametric restrictions: Let F (·;θ�g) be a known function up
to unknown (θ�g) and H0 = {h ∈ H : h(·) = F (·;θ�g) for some θ ∈ 	 and g ∈ G}, for a
finite-dimensional, convex compact parameter space 	 and a nonparametric closed and
convex function class G. The known function F (·;θ�g) could be nonlinear in θ but is as-
sumed to be linear (or affine) in g and consequently, H0 is a closed convex subset of H.
Examples include null hypotheses of parametric form, or partially linear form, or partially
parametric additive form.

To analyze the power of any test of the null class H0 against nonparametric alterna-
tives, we require some separation in ‖ · ‖L2(X)- distance between the null and the class of
nonparametric alternatives for all h ∈ H. Below, we use the notation ‖h − H0‖L2(X) :=
infφ∈H0 ‖h−φ‖L2(X) = ‖h−�H0h‖L2(X) . We consider the class of nonparametric alterna-
tives

H1(δrn) := {
h ∈H : ‖h−H0‖L2(X) ≥ δrn

}
for some constant δ > 0 and a separation rate of testing rn > 0 that decreases to zero as
the sample size n goes to infinity. We say that a test statistic Tn with values in {0�1} is
consistent uniformly over H1(δrn) if suph∈H1(δrn) Ph(Tn = 0) = o(1).

In Section 3, we establish the minimax (separation) rate of testing rn in the sense of Ing-
ster (1993): We propose a test that minimizes the sum of the supremum of the type I error
over H0 and the supremum of the type II error over H1(δrn); see Figure 1. Moreover, we
show that the sum of both errors cannot be improved by any other test.

DEFINITION 1: A separation rate of testing rn is called the minimax (separation) rate
of testing if the following two requirements are met for every level α ∈ (0�1):

(i) For some constant δ∗ := δ∗(α) > 0, it holds that

lim inf
n→∞

inf
Tn

{
sup
h∈H0

Ph(Tn = 1) + sup
h∈H1(δ∗rn)

Ph(Tn = 0)
}

≥ α� (2.2)

where infTn is the infimum over all statistics with values in {0�1}.
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2032 C. BREUNIG AND X. CHEN

FIGURE 1.—Illustration of separation distance δrn between a composite null H0 and nonparametric alter-
natives H1(δrn).

(ii) There exists a test statistic Tn := Tn(α) with values in {0�1} such that

lim sup
n→∞

{
sup
h∈H0

Ph(Tn = 1) + sup
h∈H1(δ∗rn)

Ph(Tn = 0)
}

≤ α (2.3)

for some constant δ∗ > 0.

We refer to Part (i) as the lower bound and Part (ii) as the upper bound, and the test
statistic Tn := Tn(α) in Part (ii) attaining the matching lower and upper bound as an op-
timal test. We use r∗n to denote the minimax (separation) rate of testing as the matching
lower and upper bound.

In Section 3, we first establish a minimax rate of testing r∗n assuming the knowledge
of the smoothness of alternative NPIV functions h ∈ H and the inversion property of
the conditional expectation operator T :L2(X) �→L2(W ). Both are unknown in practice.
The minimax rate r∗n is attained by a sieve test statistic using an optimal choice of sieve
dimension (a tuning parameter) that depends on these unknown objects, and hence is in-
feasible. In Section 4, we provide a data-driven modification of the optimal sieve test, that
is, a feasible testing procedure that adapts to the unknown smoothness of the unrestricted
NPIV function h ∈H in the presence of unknown smoothing properties of the inverse of
the operator T . Precisely, we propose a feasible test statistic T̂n with data-driven tuning
parameters in Section 2.2. We show that T̂n attains the minimax rate of testing r∗n within
a
√

log log(n) multiplicative factor, has asymptotic size control over the composite null,
and is consistent uniformly over the class of nonparametric alternatives in Theorem 4.2.
We call our test T̂n adaptive and rate-optimal (or sometimes simply adaptive).

2.2. Our Adaptive Test

Our test is based on a consistent estimate of the quadratic distance, ‖h−�H0h‖2
L2(X) =

‖h−H0‖2
L2(X) , between the NPIV function h ∈H and its projection �H0h onto H0 under

the ‖ · ‖L2(X) . We first introduce some notation. Let {ψj}∞
j=1 and {bk}∞

k=1 be complete basis
functions for the Hilbert spaces L2(X) and L2(W ), respectively. Let ψJ(·) and bK(·) be
vectors of basis functions of dimensions J and K =K(J) ≥ J, respectively. These can be
cosine, power series, spline, or wavelet basis functions. Let G = E[ψJ(X)ψJ(X)′], Gb =
E[bK(J) (W )bK(J) (W )′], and S = E[bK(J) (W )ψJ(X)′]. We assume that G, Gb, and S′G−1

b S
have full ranks. Then the J ×K(J) matrix A=G1/2[S′G−1

b S]−1S′G−1
b is well defined. Let
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2033

�J denote the closed linear subspace of L2(X) spanned by {ψ1� � � � �ψJ}. We define a
population 2SLS projection of h ∈L2(X) onto the sieve space �J as

QJh(·) :=ψJ(·)′G−1/2AE
[
bK(W )h(X)

]
�

For any NPIV function h ∈H in (2.1), we have QJh(·) =ψJ(·)′G−1/2AEh[bK(W )Y ], and∥∥QJ(h−�H0h)
∥∥2

L2(X)
= ∥∥AEh

[
bK(W )

(
Y −�H0h(X)

)]∥∥2
� (2.4)

which approximates ‖h−�H0h‖2
L2(X) well as J grows large (see Lemma B.1).

For each sieve dimension J, we construct a test based on an estimated quadratic dis-
tance ‖QJ(h−�H0h)‖2

L2(X) between the unrestricted and restricted NPIV estimators of
a function h satisfying (2.1). Let �= (ψJ(X1)� � � � �ψJ(Xn))′, B= (bK(W1)� � � � � bK(Wn))′,
PB = B(B′B)−B′, and Â = √

n(�′�)1/2[�′PB�]−�′B(B′B)−. Let Y = (Y1� � � � �Yn)′. Our
unrestricted sieve NPIV estimator solves a sample 2SLS problem (Blundell, Chen, and
Kristensen (2007)):

ĥJ = arg min
φ∈�J

∑
1≤i�i′≤n

(
Yi −φ(Xi)

)
bK(J) (Wi)′Â′ÂbK(J) (Wi′)

(
Yi′ −φ(Xi′)

)
=ψJ(·)′[�′PB�

]−
�′PBY� (2.5)

Let H0�J denote a nonempty, closed and convex, finite-dimensional subset of H0. A re-
stricted NPIV estimator for �H0h ∈H0 is given by

ĥR
J = arg min

φ∈H0�J

∑
1≤i�i′≤n

(
Yi −φ(Xi)

)
bK(J) (Wi)′Â′ÂbK(J) (Wi′)

(
Yi′ −φ(Xi′)

)
� (2.6)

The choice of H0�J is allowed to depend on the structure of the null class of NPIV func-
tions H0. For a general nonparametric or a semi-nonparametric composite null hypothe-
sis, H0�J depends on sieve dimension J and grows dense in H0 as the sample size increases.
For instance, we let H0�J = �J ∩ H0 under a nonparametric composite null whenever
�J ∩ H0 �= ∅ (which holds for the nonparametric inequality restrictions in Example 2.1).
We can also let H0�J = H0 under a simple null (H0 = {h0} for a known function h0), or
under a parametric composite null (H0 ={F (·;θ)� θ ∈	} for some known mapping F).

For each sieve dimension J, we compute a J- dependent test statistic nD̂J/V̂J , which is
a standardized, centered (or leave-one-out) version of the sample analog of (2.4):

D̂J = 2
n(n− 1)

∑
1≤i<i′≤n

(
Yi − ĥR

J (Xi)
)
bK(J) (Wi)′Â′ÂbK(J) (Wi′)

(
Yi′ − ĥR

J (Xi′)
)
� (2.7)

V̂J =
∥∥∥∥∥Â

(
1
n

n∑
i=1

(
Yi − ĥJ(Xi)

)2
bK(J) (Wi)bK(J) (Wi)′

)
Â′
∥∥∥∥∥
F

� (2.8)

where V̂J estimates the population normalization factor

VJ = ∥∥AEh

[(
Y − h(X)

)2
bK(J) (W )bK(J) (W )′]A′∥∥

F
� (2.9)

which is the variance of 2
n(n−1)

∑
1≤i<i′≤n(Yi −h(Xi))bK(J) (Wi)′A′AbK(J) (Wi′)(Yi′ −h(Xi′)).

 14680262, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
18602 by U

niversitaT
s- U

nd, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2034 C. BREUNIG AND X. CHEN

We compute our adaptive test for the null hypothesis H0 against nonparametric alter-
natives in three simple steps.

Step 1

Compute a random exponential scan (RES) index set:

În := {
J ≤ Ĵmax : J = J2j where j = 0�1� � � � � jmax

}
� (2.10)

where J := �√log logn�, jmax := �log2(n1/3/J)�, and the empirical upper bound

Ĵmax := min
{
J > J : 1�5

[
ζ(J)

]2
√

(logJ)/n≥ ŝJ
}
� (2.11)

where ŝJ is the minimal singular value of (B′B)−1/2B′�(�′�)−1/2, and ζ(J) = √
J for

spline, wavelet, or trigonometric sieve basis, and ζ(J) = J for power series.

Step 2

Let #(În) be the cardinality of the RES index set. For a nominal level α ∈ (0�1), we
compute a Bonferroni corrected chi-squared critical value as

η̂J(α) := (
q
(
α/#(În)� J

)− J)/√J�
where q(a�J) is the 100(1 −a)%-quantile of the standard chi-squared distribution with J
degrees of freedom.

Step 3

Let ŴJ(α) := nD̂J/(η̂J(α)V̂J) for all J ∈ În. Compute the test

T̂n := 1
{
there exists J ∈ În such that ŴJ(α) > 1

}
� (2.12)

where 1{·} is the indicator function. Under the nominal level α ∈ (0�1), T̂n = 1 indicates
rejection of the null H0 and T̂n = 0 indicates a failure to reject the null.

REMARK 2.1—Index set for J: The RES index set În determines a collection of candi-
date sieve dimensions J for our test. The data-dependent upper bound Ĵmax ensures that
the cardinality of the index set În is not too large relative to the sampling variability of un-
restricted sieve NPIV estimation, but that Ĵmax still diverges in probability at a rate much
faster than that of J. Therefore, the index set is large enough to detect a large collection
of alternative NPIV functions. In simulations and empirical applications where we have
used quadratic B-splines, we find that our adaptive test results are not sensitive to the
choice of the constant 1.5, and that the lower bound J is not binding in most cases. For
other sieve bases, one might need to use a different constant to ensure a sufficiently large
index set.

REMARK 2.2—Choice of K: Our adaptive testing procedure lets K :=K(J) be any de-
terministic function of J satisfying limJ→∞

K(J)
J

= c ∈ [1�∞), and simply optimizes over
J ∈ În. Our theoretical results, including the asymptotic size control, are valid for any fi-
nite constant c ≥ 1. In simulation studies and real data applications, we let K(J) = cJ.
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2035

Since a larger c > 1 implies more over-identification restrictions in a sieve NPIV (2SLS)
regression, we expect that a larger c > 1 would lead to better power in finite samples.
We have tried K(J) ∈ {2J�4J�8J} in simulation studies in various designs. The simula-
tion results show that (i) our adaptive test indeed has size control regardless of sample
sizes, strength of instruments, and even when K(J) = 8J; (ii) while our adaptive test with
K(J) = 8J has better empirical power for small sample sizes and weak instruments, the
empirical power curves are not sensitive to the choice of K for moderate to large sample
sizes or strong instruments. These findings are consistent with our theory that the choice
of J is the key tuning parameter in minimax rate-optimal hypothesis testing in NPIV mod-
els using sieve methods.

REMARK 2.3—Critical values: A remarkable feature of our adaptive test is that it pro-
vides asymptotic size control for inequality restrictions without restricting the degree of
freedom of the Bonferroni corrected chi-squared critical values to the number of binding
constraints. This is established by the observation that our Bonferroni corrected critical
values η̂J(α) diverge slowly as n→ ∞ with probability approaching 1; see Lemma B.5.
This, along with the cardinality of În not becoming too large by construction, and com-
plexity restrictions on the composite null hypotheses, enables us to establish asymptotic
size control.

3. THE MINIMAX RATE OF TESTING

This section derives the minimax separation rate of hypothesis testing in NPIV models,
when H is a relative compact subset of L2(X). For simplicity, we assume in this paper
that H is a standard Sobolev ellipsoid of smoothness p> 0, which can be expressed as

H =
{
h ∈L2(X) :

∞∑
j=1

j2p/dx〈h� ψ̃j〉2
X ≤ C2

H

}
� for a finite constant CH > 0�

where {ψ̃j}∞
j=1 is the orthonormal basis for L2(X) that is constructed from the basis {ψj}∞

j=1

(using the Gram–Schmidt procedure). Assuming the smoothness p is known, we first es-
tablish a lower bound for theL2 rate of testing in Section 3.1, and then show that the lower
bound can be achieved by a sieve test if the sieve dimension J can be chosen optimally in
Section 3.2.

3.1. The Lower Bound

Before we state the lower bound for the rate of testing, we introduce the main assump-
tions.

ASSUMPTION 1: (i) infw∈W infh∈HVarh(Y − h(X)|W =w) ≥ σ2 > 0; (ii) for any h ∈ H,
Th= 0 implies that ‖h‖2

L2(X) = 0; (iii) the densities ofX andW are uniformly bounded be-
low from zero and from above on their supports, which are Cartesian product of bounded
intervals; (iv) there are a finite constant C > 0 and a positive decreasing function ν with
νj := ν(j) such that ‖Th‖2

L2(W ) ≤ C∑
j≥1 ν

2
j 〈h� ψ̃j〉2

X for all h ∈H.

Assumptions 1(i), (ii), (iii) are basic regularity conditions imposed in the paper. As-
sumption 1(iv) specifies the smoothing property of the conditional expectation operator
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2036 C. BREUNIG AND X. CHEN

T relative to the basis {ψ̃j}. The smoother T is (i.e., the smoother the conditional density
of X given W is), the faster the sequence νj in Assumption 1(iv) decreases to zero, and
the harder it is to detect properties of the NPIV function in the L2(X) metric.

In this paper, we call a decreasing sequence {νj} regularly varying if ν−4
J J �

∑J

j=1 ν
−4
j . The

regularly varying sequence {νj} allows for very broad decreasing patterns, and includes
two leading special cases: (1) mildly ill-posed case where νj = j−a/dx for some a > 0; and
(2) severely ill-posed case where νj = exp(−ja/dx/2) for some a > 0.

THEOREM 3.1: Let Assumption 1 hold. Consider testing a closed convex null H0 versus
H1(δrn) ={h ∈H : ‖h−H0‖L2(X) ≥ δrn} for some constant δ > 0 and a separation rate

rn = n−1/2

(
J∗∑
j=1

ν−4
j

)1/4

� with J∗ := max

{
J : n−1/2

(
J∑
j=1

ν−4
j j

4p/dx

)1/4

≤ CH

}
� (3.1)

Then: for any α ∈ (0�1), there exists a constant δ∗ := δ∗(α) > 0 such that

lim inf
n→∞

inf
Tn

{
sup
h∈H0

Ph(Tn = 1) + sup
h∈H1(δ∗rn)

Ph(Tn = 0)
}

≥ α�

where suph∈H�
Ph(·) denotes the supremum over h ∈ H� and distributions of (X�W �U) sat-

isfying Assumption 1 for �= 0�1.
Further, when {νj} is regularly varying, the separation rate rn given in (3.1) simplifies to

rn ∼ J−p/dx
∗ � with J∗ ∼ max

{
J : n−1/2J1/4ν−1

J ≤ J−p/dx}� (3.2)

(1) Mildly ill-posed (νj = j−a/dx) case: rn ∼ n−2p/(4(p+a)+dx) .
(2) Severely ill-posed (νj = exp(−ja/dx/2)) case: rn ∼ (logn)−p/a.

According to Theorem 3.1, the lower bound of the L2 rate of testing is n−2p/(4(p+a)+dx) in
the mildly ill-posed case, which goes to zero faster than the lower bound n−p/(2(p+a)+dx) of
the L2 rate of estimation (Hall and Horowitz (2005) and Chen and Reiß (2011)). For the
severely ill-posed NPIV models, the lower bound of the L2 rate of testing is (logn)−p/a,
which coincides with the lower bound of estimation in both the L2 norm (Chen and Reiß
(2011)) and the sup-norm (Chen and Christensen (2018)).

In the literature on linear ill-posed inverse problem with a compact operator T , an “ex-
act link condition” is commonly used to describe the smoothing (or compact embedding)
property of T , which can be stated as follows:

c
∑
j≥1

ν2
j 〈h� ψ̃j〉2

X ≤ ‖Th‖2
L2(W ) ≤ C

∑
j≥1

ν2
j 〈h� ψ̃j〉2

X for all h ∈H (3.3)

for some finite constants C ≥ c > 0 and a positive decreasing function ν with νj := ν(j).
The RHS inequality of (3.3) (i.e., Assumption 1(iv)) is used for the lower bound calcula-
tion, and the LHS inequality of (3.3) is imposed for the upper bound calculation. How-
ever, to have matching lower and upper bound, that is, to establish the rate is minimax
optimal, the exact link condition (3.3) or something similar is typically imposed even with
a known T ; see, for example, Chen and Reiß (2011). We note that any compact operator
T has a unique singular value decomposition. If the basis {ψ̃j} is an eigenfunction basis

 14680262, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
18602 by U

niversitaT
s- U

nd, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2037

associated with the operator T , then (3.3) is automatically satisfied with C = c = 1 and
{νj}∞

j=1 being its singular values in decreasing order. More generally, (3.3) is also satisfied
when {ψ̃j} is a Riesz basis (see Blundell, Chen, and Kristensen (2007)). Since the condi-
tional expectation operator T is compact under very mild conditions (such as when the
conditional density of X given W is continuous), it typically satisfies (3.3), which is an
alternative way to express the smoothing property of the operator T .

In our proof of Theorem 3.1, we reduce the lower bound calculation for the NPIV
model to that for a model with a known operator T . Consequently, Assumption 1(iv) is
sufficient to establish the lower bound. However, for the upper bound calculation of the
NPIV model, we need to estimate the unknown operator T . Therefore, in addition to the
LHS inequality of (3.3), some extra sufficient conditions will be used to address the error
of estimating T nonparametrically. See the next subsection for details.

3.2. An Upper Bound Under a Simple Null Hypothesis

For a simple null H0 ={h0}, we redefine D̂J in (2.7) with ĥR
J = h0 as

D̂J(h0) = 2
n(n− 1)

∑
1≤i<i′≤n

(
Yi − h0(Xi)

)(
Yi′ − h0(Xi′)

)
bK(J) (Wi)′Â′ÂbK(J) (Wi′)� (3.4)

We also redefine our test statistic T̂n with a singleton RES index set {J} as

Tn�J = 1

{
nD̂J(h0)
V̂J

> ηJ(α)
}

with ηJ(α) = (
q(α�J) − J)/√J� (3.5)

The test Tn�J with optimally chosen J serves as a benchmark of our adaptive testing pro-
cedure (given in (4.1)) for the simple null hypothesis.

We define the projections �Jh(·) =ψJ(·)′G−1〈ψJ�h〉L2(X) for h ∈L2(X) and �Km(·) =
bK(·)′G−1

b E[bK(W )m(W )] for m ∈ L2(W ). Further, let sJ = infh∈�J ‖�KTh‖L2(W )/

‖h‖L2(X) , that is, sJ coincides with the minimal singular value of G−1/2
b SG−1/2. Let

ζJ = max(ζψ�J� ζb�K), ζψ�J = supx ‖G−1/2ψJ(x)‖, and ζb�K = supw ‖G−1/2
b bK(w)‖. We assume

throughout the paper that ζJ = O(
√
J) (which holds for polynomial spline, wavelet, and

cosine bases), or ζJ =O(J) (which holds for orthogonal polynomial bases).

ASSUMPTION 2: (i) supw∈W suph∈H Eh[(Y − h̃(X))2|W = w] ≤ σ2 < ∞, where h̃ ∈
{h��H0h} and suph∈H Eh[(Y−h(X))4]<∞; (ii) s−1

J ζ
2
J

√
(logJ)/n=O(1); (iii) ζJ

√
logJ =

O(Jp/dx); (iv) s−1
J ‖�KT (�Jh − h)‖L2(W ) ≤ CT‖�Jh − h‖L2(X) for a constant CT > 0, uni-

formly for h ∈H.

Let �J�1 := {h ∈�J : ‖h‖L2(X) = 1}. Then τJ := [infh∈�J�1 ‖Th‖L2(W )]−1 is the sieve mea-
sure of ill-posedness that has been used in sieve estimation of NPIV models (see, e.g.,
Blundell, Chen, and Kristensen (2007)). We have sJ ≤ τ−1

J by definition.

ASSUMPTION 3: (i) suph∈�J�1 τJ‖(�KT − T )h‖L2(W ) = o(1); (ii) the LHS inequality of
(3.3) holds.

Assumption 2(i) is an extra condition on the data-generating process (DGP) since it im-
poses upper bounds on conditional second moment and finiteness of unconditional fourth
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2038 C. BREUNIG AND X. CHEN

moment. We note that the DGP displayed in our proof of Theorem 3.1 already satisfies
this assumption; it has no effect on our lower bound result. Assumptions 2(ii), (iii), (iv)
are imposed since our test statistic involves linear sieve estimated operator T to achieve
the separation rate. Assumptions 2(ii), (iii) impose restrictions on the sieve dimension
J, which are satisfied by J∗ given in (3.2) of Theorem 3.1. Assumption 2(iv) imposes an
upper bound on the smoothing properties of the conditional expectation operator T . It
is akin to the L2 stability condition used in sieve NPIV estimation and is satisfied by
Riesz bases (see Blundell, Chen, and Kristensen (2007, Assumption 6)). Assumption 3(i)
is a mild condition on the approximation properties of the basis used for the instrument
space (see Chen and Christensen (2018, Assumption 4(i))). It implies that sJ and τ−1

J are
asymptotically equivalent:

τ−1
J ≥ sJ = inf

h∈�J�1
‖�KTh‖L2(W )

≥ inf
h∈�J�1

‖Th‖L2(W ) − sup
h∈�J�1

∥∥(�KT − T )h
∥∥
L2(W )

= τ−1
J

(
1 − o(1)

)
�

while Assumption 3(ii) implies τ−1
J = infh∈�J�1 ‖Th‖L2(W ) ≥ √

cνJ for all J. Assumption 3
thus implies

s−1
J ∼ τJ ≤ (

√
c)−1ν−1

J �

Further, sJ ∼ τ−1
J ≤ ‖Tψ̃J‖L2(W ) ≤ √

CνJ under Assumption 1(iv) and {ψ̃j} being an or-
thonormal basis in L2(X), and Assumption 2(iv) is satisfied under Assumptions 1(iv) and
3. Therefore, Assumptions 2 and 3 have no effect on the lower bound calculation in The-
orem 3.1.

The next theorem provides an upper bound on the separation rate of testing inL2 under
a simple null using the test statistic Tn�J .

THEOREM 3.2: Let Assumptions 1(i)–(iii) and 2 hold. Consider testing the simple hypoth-
esis H0 ={h0} (for a known function h0) versus H1(δ◦rn�J) ={h ∈H : ‖h−h0‖L2(X) ≥ δ◦rn�J}
for a constant δ◦ > 0 and a separation rate

rn�J = max
{
n−1/2s−1

J J
1/4� J−p/dx}� (3.6)

Then, for any α ∈ (0�1), we have

lim sup
n→∞

Ph0 (Tn�J = 1) ≤ α and lim
n→∞

sup
h∈H1(δ◦rn�J )

Ph(Tn�J = 0) = 0� (3.7)

In addition, let Assumption 3 hold and J∗0 := max{J : n−1/2ν−1
J J

1/4 ≤ J−p/dx}. Then: the test
statistic Tn�J∗0 attains the optimal separation rate of

rn�J∗0 = (J∗0)−p/dx ∼ rn� (3.8)

which is the lower bound rate given in (3.2) when {νj} is regularly varying.
(1) Mildly ill-posed case: J∗0 ∼ n2dx/(4(p+a)+dx) and rn�J∗0 ∼ n−2p/(4(p+a)+dx) .
(2) Severely ill-posed case: J∗0 = (c logn)dx/a for some c ∈ (0�1) and rn�J∗0 ∼ (logn)−p/a.

Theorem 3.2 shows that, under Assumptions 1(i)–(iii) and 2, the test statistic Tn�J given
in (3.5) attains the L2 separation rate of testing rn�J in (3.6). Given a sieve dimension J,
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2039

this rate consists of a standard deviation term (n−1/2s−1
J J

1/4) and a bias term (J−p/dx). A
central step to achieve this rate result is to establish a rate of convergence of the quadratic
distance estimator D̂J(h0) (see Theorem B.1), which we show is sufficient for the consis-
tency of Tn�J uniformly over H1(δ◦rn�J). In addition, under Assumption 3, Theorem 3.2
implies that the sieve test Tn�J∗0 achieves the L2 minimax rate of testing for a simple null,
with known smoothness p of the nonparametric alternatives and known degree of ill-
posedness.

Given a sieve dimension J, the L2 rate of sieve estimation for any NPIV function h ∈H
is max{n−1/2s−1

J J
1/2� J−p/dx} (see, e.g., Chen and Reiß (2011)). Comparing the L2 rate of

estimation and of testing via the sieve NPIV procedures, while both have the same bias
term J−p/dx , the L2 rate of testing has a smaller “standard deviation” term n−1/2s−1

J J
1/4. In-

tuitively, we may obtain a higher precision in testing as the L2 rate of testing is determined
by estimating a quadratic norm of the unrestricted NPIV function h ∈ H. Interestingly,
although this leads to a faster optimal L2 rate of sieve testing rn�J∗0 ∼ n−2p/(4(p+a)+dx) than
the optimal L2 rate of estimation n−p/(2(p+a)+dx) in the mildly ill-posed case, the optimal
L2 rate of sieve testing rn�J∗0 ∼ (logn)−p/a in the severely ill-posed case is the same as the
optimal rate of sieve estimation in both the L2 norm (Chen and Reiß (2011)) and the sup-
norm (Chen and Christensen (2018)). This is because, in the severely ill-posed case, the
bias term dominates the standard deviation term for the optimally chosen sieve dimension
in both sieve testing and estimation.

4. ADAPTIVE INFERENCE

This section establishes theoretical properties of our test T̂n defined in (2.12). We show
that it adapts to the unknown smoothness p> 0 of the functions in H. Section 4.1 estab-
lishes the rate optimality of our test for simple null hypotheses. Section 4.2 extends this
result to testing for composite null problems. Section 4.3 proposes L2 confidence sets by
inverting the adaptive test under imposed restrictions on the NPIV function.

4.1. Adaptive Testing Under a Simple Null Hypothesis

Under the simple null hypothesis H0 = {h0} with a known function h0 satisfying (1.1),
our test T̂n given in (2.12) simplifies to

T̂n = 1

{
there exists J ∈ În such that

nD̂J(h0)
V̂J

> η̂J(α)
}
� (4.1)

where D̂J(h0) is defined in (3.4), and În, V̂J , η̂J(α) are given in Section 2.2.
Recall that the RES index set În, given in (2.10), depends on an upper bound Ĵmax given

in (2.11). To establish our asymptotic results below, we introduce a non-random index set
In with a deterministic upper bound J as follows:

In = {
J ≤ J : J = J2j where j = 0�1� � � � � jmax

}⊂ [J� J]� (4.2)

with J = sup{J : ζ2
J

√
(logJ)/n ≤ csJ} for some sufficiently large constant c > 0. We show

in Lemma B.8(i) that Ĵmax ≤ J (and thus În ⊂ In) holds with probability approaching 1
uniformly over all functions h ∈H. Thus, J serves as a deterministic upper bound for the
RES index set În.
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2040 C. BREUNIG AND X. CHEN

ASSUMPTION 4: (i) Assumptions 2(ii), (iv) hold uniformly for all J ∈ In; (ii) s−4
J J �∑J

j=1 s
−4
j uniformly for all J ∈ In; (iii) p ≥ 3dx/4 when using cosine, spline, or wavelet

basis functions and p≥ 7dx/4 when using power series basis functions.

Assumptions 4(i), (iii) strengthen Assumptions 2(ii), (iii), (iv) to hold uniformly over
the deterministic index set In. They are used to establish Lemma B.8. Assumption 4(i)
restricts the growth of the deterministic upper bound J of the RES index set În. Assump-
tion 4(ii) is satisfied if {sj} is regularly varying, which is implied by Assumptions 1(iv) and
3 with {νj} regularly varying. We note that Assumptions 4(ii), 2(i), and 1(i) together imply
that VJ ∼ s−2

J

√
J uniformly for h ∈H and J ∈ In (see Lemmas B.2 and B.3).

THEOREM 4.1: Let Assumptions 1(i)–(iii), 2(i), 3, and 4 hold. Consider testing the simple
null H0 = {h0} (for a known function h0) versus H1(δ◦rn) = {h ∈ H : ‖h− h0‖L2(X) ≥ δ◦rn}
for a constant δ◦ > 0 and an adaptive separation rate

rn = (
J◦)−p/dx

� where J◦ := max
{
J : n−1/2ν−1

J (J log logn)1/4 ≤ J−p/dx}� (4.3)

Then, for any α ∈ (0�1), we have

lim sup
n→∞

Ph0 (̂Tn = 1) ≤ α and lim
n→∞

sup
h∈H1(δ◦rn)

Ph (̂Tn = 0) = 0� (4.4)

(1) Mildly ill-posed case: rn ∼ (
√

log logn/n)2p/(4(p+a)+dx) .
(2) Severely ill-posed case: rn ∼ (logn)−p/a.

Theorem 4.1 establishes an upper bound for the testing rate of the adaptive test T̂n
under a simple null hypothesis. The proof of Theorem 4.1 relies on a novel exponential
bound for degenerate U-statistics based on sieve estimators (see Lemma B.6). In partic-
ular, we control the type I error using tight lower bounds for adjusted chi-squared critical
values (see Lemma B.5) and establish the consistency of T̂n uniformly over H1(δ◦rn).

From Theorem 4.1, we see that the adaptive test attains the oracle minimax rate of
testing within a

√
log log(n) term in the mildly ill-posed case. For the adaptive testing in

regression models without endogeneity (i.e., whenX =W ), it is well known that the extra√
log log(n) term is required (see Spokoiny (1996)). In the severely ill-posed case, our

adaptive test attains the exact minimax rate of testing and hence, there is no price to pay
for adaptation. This is because, in the severely ill-posed case, the bias term dominates the
standard deviation term when the sieve dimension coincides with J◦, irrespective of the√

log log(n) term.

REMARK 4.1: As is clear from the proof, Result (4.4) of Theorem 4.1 remains valid
with an adaptive rate rn = (J◦

s )
−p/dx where J◦

s := max
{
J : n−1/2s−1

J (J log logn)1/4 ≤ J−p/dx},
without imposing Assumption 3. The extra Assumption 3, or its consequence s−1

J � ν−1
J , is

used to establish the optimality of the adaptive rate rn = (J◦)−p/dx only. The same remark
also applies to Result (4.6) of Theorem 4.2, Corollary 4.1 and Corollary 4.2 below.

4.2. Adaptive Testing Under Composite Null Hypotheses

We extend the results from Section 4.1 to adaptive testing for a general composite null
hypothesis H0, which is a nonempty, closed and convex strict subset of H. Without loss of
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2041

generality, we assume 0 ∈H0. This is satisfied for the inequality restrictions in Example 2.1
and the semiparametric equality restrictions considered in Example 2.2 if, for instance,
F (·;θ�g) = 0 for some θ ∈	 and g ∈ G.

Below, we impose some conditions on the complexity of the closed and convex null class
of functions H0. Let SK ={e ∈R

K : e2
1 +· · ·+e2

K = 1} denote the (K−1)-dimensional unit
sphere. LetK◦ =K(J◦), b̃K(·) =G−1/2

b bK(·), and Z := (X ′�W ′)′. For any h ∈H1(δ◦rn), we
consider the following class of functions:

Fh�e := {
(φ−�H0h)(X)b̃K

◦
(W )′e :φ ∈H0�J◦

}
� e ∈ SK◦

�

with its envelope function denoted by Fh�e. Let N[](ε�F�L2(Z)) be the L2(Z) covering
number with bracketing for F , which is the minimal number of ε-brackets, inL2(Z) sense,
needed to cover F . We let Ch := maxe∈SK◦

∫ 1
0 (1 + logN[](ε‖Fh�e‖L2(Z)�Fh�e�L

2(Z)))1/2 dε.

ASSUMPTION 5: (i) For any ε > 0, it holds that suph∈H0
Ph(maxJ∈In (ζJ‖ĥR

J − h‖L2(X)/

cJ) > ε) → 0 with cJ = max{1� (log logJ)1/4}; (ii) for some constant C > 0, it holds that
suph∈H1(δ◦rn) Ph(ζJ◦Ch‖ĥR

J◦ −�H0h‖L2(X) >C) → 0 and suph∈H1(δ◦rn) Ch � (J◦)1/4.

Assumption 5 restricts the complexity of the composite null hypothesis H0. Assump-
tion 5(i) implies that T̂n has size control uniformly over the composite null H0. Assump-
tion 5(ii) ensures the consistency of T̂n uniformly over H1(δ◦rn). Note that Assumption 5
imposes estimation rate conditions on ĥR

J under the composite null and the nonparamet-
ric alternatives, which can be viewed as NPIV extensions of the parametric estimation
rate conditions imposed in Horowitz and Spokoiny (2001, Assumption 2) for testing for a
parametric regression against nonparametric regressions.

REMARK 4.2—Sufficient conditions for Assumption 5(i): Assumption 5(i) is a very
mild condition on the estimation rate (in L2) of the restricted sieve NPIV estimator under
H0.

(1) In the case of parametric restrictions, where ‖ĥR
J −h‖L2(X) ≤ const�×n−1/2 with prob-

ability approaching 1 uniformly over h ∈H0, Assumption 5(i) is automatically satisfied by
Assumption 4(i).

(2) Under nonparametric restrictions, we note that ‖ĥR
J −h‖L2(X) ≤ ‖ĥJ −h‖L2(X) for all

h ∈H0, and that

max
J∈In

ζJ‖ĥJ − h‖L2(X)

cJ
≤ const�× max

J∈In

{
ζJ

√
J√

nsJcJ
+
ζJ
∥∥�In

J h− h∥∥
L2(X)

cJ

}
(4.5)

with probability approaching 1 uniformly for h ∈ H0, where �In
J denotes the projection

onto the closed linear subspace of L2(X) spanned by {ψJ : J ∈ In}. The first summand on
the right-hand side of (4.5) converges to zero by the definition of J = J(n). For the bias
part, we assume that the index set has sufficient information to approximate the NPIV
function h ∈H0. Let p0 denote the smoothness and d0 the dimension of the nonparamet-
ric component under H0. If ‖�In

J h − h‖L2(X) = O(J−p0/d0) and ζJ = O(
√
J), the second

summand of the right-hand side of (4.5) uniformly converges to zero if p0/d0 ≥ 1/2. Since
the class H0 is a less complex subset of H, it is reasonable to assume that p0/d0 ≥ p/dx
and thus p0/d0 ≥ 1/2 is automatically satisfied given Assumption 4(iii).

 14680262, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
18602 by U

niversitaT
s- U

nd, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2042 C. BREUNIG AND X. CHEN

REMARK 4.3—Sufficient conditions for Assumption 5(ii): Assumption 5(ii) restricts
the complexity of H0 to have no effect on the adaptive minimax rate of testing asymptot-
ically. Note that for any ε > 0 and e ∈ SK◦ , we have

E
[

sup
φ1�φ2∈H0�J◦ :‖φ1−φ2‖∞≤ε

∣∣(φ1 −φ2)(X)b̃K
◦
(W )′e

∣∣2]≤ ε2�

using that E(b̃K◦ (W )′e)2 = 1. Thus, logN[](ε�Fh�e�L
2(Z)) ≤ logN[](ε�H0�J◦�L∞) � ε−dx/p

if the functions in H0 have uniformly bounded partial derivatives with highest order
derivatives being Lipschitz; see van der Vaart and Wellner (2000, Theorem 2.7.1). We
obtain Ch � 1 under the condition 2p ≥ dx, which is satisfied given Assumption 4(iii). In
this case, a sufficient condition for Assumption 5(ii) is given by Ph(ζJ◦‖ĥR

J◦ −�H0h‖L2(X) >
C) → 0 uniformly for h ∈ H1(δ◦rn), which is less restrictive than Assumption 5(i) since
the sieve dimension is fixed at J◦. When the basis functions in b̃K◦ are uniformly bounded,
such as for trigonometric bases, we immediately obtain Ch � 1. If H0 consists of convex
functions that are Lipschitz and map a compact and convex set in R to [0�1], then Ch � 1
by van der Vaart and Wellner (2000, Corollary 2.7.10).

The next result establishes an upper bound for the rate of testing under a composite
null hypothesis using the test statistic T̂n given in (2.12).

THEOREM 4.2: Let Assumptions 1(i)–(iii), 2(i), 3, 4, and 5 hold. Consider testing the com-
posite null H0 versus H1(δ◦rn) = {h ∈ H : ‖h− H0‖L2(X) ≥ δ◦rn} for a constant δ◦ > 0 and
the adaptive (separation) rate rn = (J◦)−p/dx given in Theorem 4.1. Then, for any α ∈ (0�1),
we have

lim sup
n→∞

sup
h∈H0

Ph (̂Tn = 1) ≤ α and lim
n→∞

sup
h∈H1(δ◦rn)

Ph (̂Tn = 0) = 0� (4.6)

(1) Mildly ill-posed case: rn ∼ (
√

log logn/n)2p/(4(p+a)+dx) .
(2) Severely ill-posed case: rn ∼ (logn)−p/a.

Theorem 4.2 states that T̂n attains the same adaptive rate of testing rn for a composite
null as that for a simple null. Moreover, (4.6) shows that T̂n simultaneously has asymp-
totic size control over the composite null, and is consistent uniformly over the largest
class of nonparametric alternatives H1(δ◦rn). The asymptotic size control is established
by controlling the sieve approximation error uniformly over the index set În under the
null, due to a projection property built in the construction of our test T̂n. See Lemma B.9,
in which we utilize the convergence of von Neumann’s alternating projection algorithm.
Theorem 4.2 is applicable to any composite null hypothesis H0 that is a closed convex
strict subset of H, including closed convex cone null restrictions as special cases.

Theorem 4.2 shows that our adaptive test has asymptotic size control and non-trivial
power against a large class of nonparametric NPIV alternatives without using under-
smoothed choice of sieve dimensions in testing. This is different from the existing non-
adaptive tests for semiparametric or shape NPIV restrictions, which achieve asymptotic
size controls via under-smoothed choice of tuning parameters in L2 estimation. For in-
stance, in their bootstrap test for convex cone restrictions of a NPIV function, Fang and
Seo (2021) estimated the unrestricted NPIV function by a sieve 2SLS estimator assum-
ing known smoothness, and chose the sieve dimension J deterministically such that the
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2043

estimation bias J−p/dx is of a smaller order than the standard deviation n−1/2s−1
J J

1/2 in L2

estimation, which leads to a non-adaptive rate of testing n−1/2s−1
J J

1/2 that is suboptimal for
L2 testing of NPIV models.

REMARK 4.4: Our adaptive minimax L2 rate of testing (
√

log logn/n)2p/(4(p+a)+dx) de-
creases to zero strictly faster than the optimal L2 rate of estimation n−p/(2(p+a)+dx) (even
assuming known smoothness) for mildly ill-posed NPIV models, and coincides with the
optimal L2 rate of estimation (logn)−p/a for severely ill-posed NPIV models. Therefore,
any test statistic based on a tuning parameter chosen for the under-smoothed L2 rate of
NPIV estimation will not be as powerful as our new test uniformly over a large class of
nonparametric alternatives.

Adaptive Testing in Semiparametric Models

Partially parametric models are often used in empirical work and can be easily incor-
porated in our framework either as restricted models or as the maintained models. Let
	⊕ G = {h(x1�x2) = x′

1θ + g(x2) : θ ∈ 	�g ∈ G}, where 	 denotes a finite-dimensional
parameter space, and G denotes a class of nonparametric functions.

Let the NPIV model (2.1) be the maintained hypothesis. We can test inequality re-
strictions as in Example 2.1 and a semiparametric structure simultaneously. For exam-
ple, we can test for a partial linear structure with a nondecreasing function g by setting
H0 = {h ∈ 	 ⊕ G : ∂x2g ≥ 0}. The class of alternative functions can then be written as
H1(rn) := {g ∈ G : ‖g− G0‖L2(X2) ≥ rn}, where G0 = {g ∈ G : ∂x2g ≥ 0} and the rate of test-
ing rn does not depend on the dimensionality ofX1. We can also test for the nonnegativity
of the coefficient θ and a partial linear restriction by setting H0 = {h ∈	⊕ G : ∂x1h≥ 0}.
As in Example 2.2, we can test semiparametric equality restriction by taking H0 =	⊕ G.

Let the partial linear IV model be the maintained hypothesis in model (2.1) with H =
	⊕ G. The maintained partial linear structure can be easily enforced in the sieve space
used to estimate the unconstrained NPIV function. For instance, we impose a partial
linear structure H in our empirical illustration on demand for differential products in
Section 6.1. Monotonicity in all arguments of h can be imposed by H0 = {h ∈ 	 ⊕ G :
θ ≥ 0� ∂x2g ≥ 0}. We also allow for second or higher order derivatives in the hypotheses
considered above.

4.3. Confidence Sets in L2

One can construct L2 confidence sets for a NPIV function by inverting our adaptive
test. For any small α> 0, the (1 −α) confidence set for a NPIV function h belonging to a
restricted nonparametric class H0 is given by

Cn(α) =
{
h ∈H0 : nD̂J(h)

V̂J
≤ η̂J(α) for all J ∈ În

}
� (4.7)

This confidence set does not depend on additional tuning parameters. The following
corollary exploits our previous results to characterize the asymptotic size and power prop-
erties of our procedure.

COROLLARY 4.1: Let Assumptions 1(i)–(iii), 2(i), 3, and 4 hold. Let rn = (J◦)−p/dx be the
adaptive rate of testing given in Theorem 4.1. Then, for any α ∈ (0�1), it holds that

lim sup
n→∞

sup
h∈H0

Ph
(
h /∈ Cn(α)

)≤ α (4.8)
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2044 C. BREUNIG AND X. CHEN

and there exists a constant δ◦ > 0 such that

lim
n→∞

inf
h∈H1(δ◦rn)

Ph
(
h /∈ Cn(α)

)= 1� (4.9)

Corollary 4.1 result (4.8) shows that the L2 confidence set Cn(α) controls size uniformly
over the class of functions H0. Moreover, result (4.9) establishes power uniformly over
the class H1(δ◦rn). We immediately see from Corollary 4.1 that the diameter of the L2

confidence ball, diam(Cn(α)) = sup{‖h1 −h2‖L2(X) : h1�h2 ∈ Cn(α)}, depends on the degree
of ill-posedness and the unknown smoothness p of H.

COROLLARY 4.2: Let Assumptions 1(i)–(iii), 2(i), 3, and 4 hold. Then, for any α ∈ (0�1),
we have suph∈H0

Ph(diam(Cn(α)) ≥ Crn) = o(1), for some constant C > 0 and the adaptive
rate rn = (J◦)−p/dx given in Theorem 4.1.

Corollary 4.2 yields a confidence set whose diameter shrinks to zero at the adaptive
optimal testing rate (of the order (J◦)−p/dx) and whose implementation does not require
specifying the values of any unknown regularity parameters. Our confidence set Cn(α)
thus adapts to the unknown smoothnessp of H (the class of unrestricted NPIV functions).

5. MONTE CARLO STUDIES

This section presents Monte Carlo performance of our adaptive test for monotonic-
ity and parametric form of an NPIV function using simulation designs based on Cher-
nozhukov, Newey, and Santos (2015). See Supplemental Appendix C for additional sim-
ulation results using other designs. All the simulation results reported here are based
on 5000 Monte Carlo replications for each experimental design and at α= 0�05 nominal
level. The simulation results clearly indicate that our simple adaptive test has size-control
and finite-sample non-trivial power uniformly against a large class of NPIV alternatives,
even for models with relatively weak instruments. In addition, simulation and real data
application results reported in Breunig and Chen (2020), but not here due to the lack
of space, have demonstrated that our adaptive test and its bootstrapped version perform
similarly well in both finite-sample size and power.

For all the designs in this section, Y is generated according to the NPIV model (2.1) for
scalar-valued random variables X and W . We let Xi = �(X∗

i ) and Wi = �(W ∗
i ), where

� denotes the standard normal distribution function, and generate the random vector
(X∗

i �W
∗
i �Ui) according to⎛⎝X∗

i

W ∗
i

Ui

⎞⎠∼N

⎛⎝⎛⎝0
0
0

⎞⎠ �
⎛⎝ 1 ξ 0�3
ξ 1 0

0�3 0 1

⎞⎠⎞⎠ � (5.1)

The parameter ξ captures the strength of instruments and varies in the experiments be-
low. As ξ increases, the instrument becomes stronger (or the ill-posedness gets weaker).
While Chernozhukov, Newey, and Santos (2015) fixed ξ = 0�5 in their design, we let
ξ ∈ {0�3�0�5�0�7} in our simulation studies. The functional form of h varies in different
Monte Carlo designs below.
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2045

5.1. Adaptive Testing for Monotonicity

We generate Y using (2.1) and (5.1) with h from the Chernozhukov, Newey, and Santos
(2015) design:

h(x) = c0

[
1 − 2�

(
x− 1/2
c0

)]
for some constant c0 ∈ [0�1]� (5.2)

This function h(x) is decreasing in x, where c0 captures the degree of monotonicity. We
note that c0 = 0 corresponds to h(x) ≡ 0 (the boundary case); h(x) ≈ 0 for c0 close to
zero and h(x) ≈ φ(0)(1 − 2x) for c0 close to 1, where φ denotes the standard normal
probability density function. The null hypothesis is that the NPIV function h is weakly
decreasing on the support of X .

We implement our adaptive test statistic T̂n given in (2.12) using quadratic B-spline
basis functions with varying number of knots for h. Due to piecewise linear derivatives,
monotonicity constraints are easily imposed on the restricted function at the derivative at
J − 1 points. For the instrument sieve bK(J) (W ), we also use quadratic B-spline functions
with a larger number of knots with K(J) ∈ {2J�4J�8J}. Implementation of the restricted
sieve NPIV estimator ĥR

J is straightforward using the R package coneproj. We compare
our adaptive test to the nonadaptive test of Fang and Seo (2021), which involves approxi-
mately computing [n−1/2s−1

J J
1/2]−1 minh∈H0 ‖ĥJ −h‖L2(X) for a deterministic choice of sieve

dimensions J and K ≥ J in their B-spline 2SLS estimate ĥJ . Their 2019 arXiv preprint
presents a simulation study with J = 3, K ∈ {3�4�5}, and other tuning parameter choices
cn = (logn)−1 and γn = 0�01/ logn, such that their test achieves approximately empirical
size control with a sample size n= 500. Below, we use FS to denote their test with J = 3
and K = 5 (as K = 5 yields the best empirical power in their simulation), which is com-
puted using R language translation of their Matlab program code. To study the sensitivity
to the choice of K, we also implement their test with K = 12�24. In our simulations, we
implement their test using 200 bootstrap iterations.

Size

Table I presents the average data-driven choice of tuning parameter J, denoted by Ĵ.
Specifically, Ĵ is the average choice of J that maximizes ŴJ(α) over the RES index set
În when the null is not rejected; and is the smallest J ∈ În such that ŴJ(α) > 1 when the
null is rejected. This data-driven choice of J corresponds to early stopping when the null is
rejected. Table I shows that, for the same sample size n, the average data-driven choice Ĵ
increases as the instrument strength (captured by the parameter ξ) increases; while for the
same instrument strength ξ, Ĵ weakly increases as the sample size n increases. Table I also
reports empirical rejection probabilities under the null hypothesis using our adaptive test
T̂n and the FS test. Our adaptive test is slightly under-sized across different sample sizes
n ∈{500�1000�5000}, different instrument strength ξ ∈{0�3�0�5�0�7}, different degrees of
monotonicity c0 ∈ {0�0�01�0�1} with c0 = 0 being the “boundary” case. Table I shows that
our adaptive test has empirical size control for allK(J) ∈{2J�4J�8J}, which is in line with
our theoretical results establishing asymptotic size control for any deterministic relation
of K ∼ cJ for some fixed constant c ≥ 1. The difference between the empirical size (of
our adaptive test) for different choice of K(J) is small when n is large or ξ = 0�7. While
the FS test with K = 5 has empirical size control, the FS test with K = 12 can be slightly
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2046 C. BREUNIG AND X. CHEN

TABLE I

TESTING MONOTONICITY—EMPIRICAL SIZE OF OUR ADAPTIVE TEST T̂n AND OF THE FS TEST (WITH J = 3).

T̂n Ĵ T̂n Ĵ T̂n Ĵ FS FS FS

n c0 ξ K(J) = 2J K(J) = 4J K(J) = 8J K = 5 K = 12 K = 24

500 boundary 0�3 0.007 3.00 0.023 3.03 0.040 3.25 0.009 0.045 0.113
0�5 0.020 3.29 0.025 3.35 0.039 3.41 0.041 0.059 0.095
0�7 0.030 3.56 0.035 3.56 0.040 3.73 0.057 0.066 0.093

0�01 0�3 0.006 3.00 0.021 3.03 0.038 3.25 0.008 0.040 0.103
0�5 0.019 3.30 0.023 3.36 0.036 3.41 0.039 0.055 0.086
0�7 0.029 3.57 0.033 3.58 0.037 3.75 0.046 0.057 0.080

0�1 0�3 0.005 3.00 0.016 3.03 0.022 3.25 0.004 0.023 0.050
0�5 0.013 3.33 0.018 3.38 0.025 3.43 0.019 0.026 0.038
0�7 0.019 3.65 0.023 3.65 0.026 3.82 0.014 0.017 0.022

1000 boundary 0�3 0.009 3.01 0.019 3.06 0.032 3.30 0.013 0.037 0.079
0�5 0.017 3.47 0.023 3.44 0.031 3.44 0.040 0.049 0.066
0�7 0.029 3.84 0.034 3.93 0.040 3.95 0.052 0.058 0.075

0�01 0�3 0.009 3.01 0.019 3.06 0.029 3.30 0.014 0.033 0.075
0�5 0.017 3.48 0.023 3.45 0.030 3.44 0.038 0.045 0.060
0�7 0.026 3.88 0.030 3.96 0.036 3.98 0.041 0.050 0.061

0�1 0�3 0.006 3.02 0.013 3.06 0.019 3.30 0.008 0.019 0.038
0�5 0.012 3.54 0.016 3.49 0.022 3.48 0.016 0.018 0.022
0�7 0.017 4.02 0.019 4.09 0.024 4.10 0.008 0.008 0.010

5000 boundary 0�3 0.021 3.36 0.025 3.38 0.029 3.38 0.038 0.046 0.056
0�5 0.033 3.54 0.034 3.60 0.041 3.79 0.051 0.055 0.057
0�7 0.041 4.11 0.044 4.10 0.044 4.07 0.052 0.055 0.057

0�01 0�3 0.020 3.36 0.024 3.39 0.028 3.39 0.037 0.043 0.052
0�5 0.031 3.56 0.033 3.62 0.038 3.80 0.038 0.044 0.046
0�7 0.038 4.18 0.039 4.17 0.039 4.14 0.034 0.036 0.039

0�1 0�3 0.016 3.39 0.018 3.41 0.020 3.39 0.019 0.021 0.025
0�5 0.022 3.68 0.022 3.73 0.027 3.91 0.008 0.009 0.008
0�7 0.023 4.46 0.025 4.44 0.026 4.40 0.001 0.001 0.001

Note: Monte Carlo average value Ĵ. Nominal level α= 0�05. True DGP from Section 5.1 using NPIV function (5.2). Instrument
strength increases in ξ.

over-sized, and with K = 24 can be heavily over-sized for all ξ and n= 500, especially so
for functions at or close to the boundary.3

Power

We next examine the rejection probabilities of our adaptive test when the data are
generated according to (2.1) and (5.1) using the NPIV function

h(x) = −x/5 + cA
(
x2 + cB sin(2πx)

)
� (5.3)

3In our previous version (arXiv:2006.09587v4), we implemented what we called a nonadaptive bootstrap test
TBn�3 of Fang and Seo (2021), which is essentially their test, but uses empirical root-mean squared metric instead
of their trapezoid rule approximated ‖ĥJ − h‖L2 (X) , and a cone projection onto a J-dimensional sieve space
instead of their optimization over grid points (for x). The “nonadaptive bootstrap test” TBn�3 has an empirical
size closer to that of our adaptive test.
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2047

FIGURE 2.—Testing monotonicity—empirical power of our adaptive test T̂n with K(J) = 4J (dashed plus
lines) and K(J) = 8J (solid circle lines) and the FS test (with J = 3, K = 5, dotted square lines). True DGP
from Section 5.1 using NPIV function (5.3) with n = 500. The vertical dotted line indicates when the null
hypothesis is violated. Alternatives are quadratic when cB = 0 and become more complex as cB > 0 increases.

where cA ∈ [0�2] and cB ∈{0�0�5�1}. The null hypothesis is that the NPIV function h(·) is
weakly decreasing over the support ofX . When cB = 0, the null is satisfied only if cA ≤ 0�1.
When cB = 0�5, the null hypothesis is satisfied only if cA ≤ 0�1/(1 + π/2) ≈ 0�04. When
cB = 1, the null is satisfied only if cA ≤ 0�1/(1 +π) ≈ 0�02.

Figure 2 depicts the empirical power function of our adaptive test T̂n (dashed plus lines
for K(J) = 4J and solid circle lines for K(J) = 8J), and of the FS test (dotted square
lines, J = 3, K = 5), under the 5% nominal level for different instrument strengths ξ ∈
{0�3�0�5�0�7}, and sample size n = 500.4 Figure 3 shows these power curves for a larger
sample size n = 5000. From both figures, we see that our adaptive test becomes more
powerful for cA > 0�1 as the instrument strength ξ and the sample size n increase. For
weak instrument strength ξ= 0�3 and a small sample size (i.e., n= 500), our adaptive test
with a larger K(J) = 8J is more powerful.

Figures 2 and 3 highlight the importance of adaptation for the power of nonparametric
monotonicity tests. When the alternative is of a simple quadratic form (i.e., cB = 0), there
is little difference between our adaptive test T̂n and the FS test. But, as the alternative
becomes more nonlinear when cB > 0 increases, the FS test becomes much less powerful

4The finite-sample power of our adaptive test with K(J) = 2J is slightly smaller than that with K(J) = 4J
when n= 500, but the power difference disappears when n becomes larger.
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2048 C. BREUNIG AND X. CHEN

FIGURE 3.—Testing monotonicity—replication of Figure 2 with n= 5000.

than our adaptive test. This shows that a test with a tuning parameter J that is a determin-
istic nondecreasing function of n can be powerful in a certain direction but not for other
nonlinear deviations.

In Supplemental Appendix C, we present another simulation design, which is based on
an NPIV monotonicity design of Chetverikov and Wilhelm (2017). Simulation results us-
ing that design reveal that the empirical size and power of our adaptive test have patterns
very similar to the ones reported in this subsection.

5.2. Testing for Parametric Restrictions

We now test for a parametric specification. We assume that the data are generated
according to the design (2.1) and (5.1) with the NPIV function h given by (5.3) with
cA ∈ [0�4] and cB ∈{0�0�5}. The null hypothesis is h being linear (i.e., cA = cB = 0).

We implement our adaptive test T̂n given in (2.12) using quadratic B-spline basis func-
tions with varying number of knots and where the constrained function coincides with the
parametric 2SLS estimator. The number of knots varies within the RES index set În as im-
plemented in the last subsection, with K(J) ∈ {2J�4J�8J}. We compare our adaptive test
to the asymptotic t-test and the test by Horowitz (2006) (denoted by JH).5 To compute

5Horowitz (2006) already demonstrated in his simulation studies, with a sample size n = 500 and 1000
Monte Carlo replications, that his test is more powerful than several existing tests including Bierens (1990)’s.
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2049

TABLE II

TESTING PARAMETRIC FORM—EMPIRICAL SIZE OF OUR ADAPTIVE TEST T̂n, THE t-TEST, AND JH TEST.
MONTE CARLO AVERAGE VALUE Ĵ. NOMINAL LEVEL α= 0�05. TRUE DGP FROM SECTION 5.2 USING NPIV

FUNCTION (5.3) WITH cA = cB = 0. INSTRUMENT STRENGTH INCREASES IN ξ.

n ξ T̂n, K(J) = 2J Ĵ T̂n, K(J) = 4J Ĵ T̂n, K(J) = 8J Ĵ t-test JH test

500 0�3 0.008 3.00 0.021 3.03 0.040 3.29 0.001 0.049
0�5 0.022 3.32 0.024 3.40 0.037 3.46 0.027 0.054
0�7 0.036 3.61 0.037 3.63 0.035 3.81 0.045 0.058

1000 0�3 0.014 3.01 0.024 3.08 0.032 3.33 0.006 0.060
0�5 0.025 3.52 0.033 3.49 0.033 3.48 0.043 0.060
0�7 0.036 3.91 0.039 4.03 0.042 4.06 0.046 0.053

5000 0�3 0.022 3.38 0.029 3.41 0.037 3.43 0.032 0.057
0�5 0.043 3.58 0.048 3.65 0.045 3.85 0.050 0.061
0�7 0.050 4.17 0.051 4.15 0.050 4.14 0.049 0.055

the JH test that involves kernel density estimation, we follow Horowitz (2006) to estimate
the joint density fXW using the kernel K(v) = (15/16)(1 − v2)21{|v|≤ 1}, with the kernel
bandwidth chosen via cross-validation minimizing mean squared error of estimating fXW .

Size

Table II reports empirical rejection probabilities of several tests under the null hy-
pothesis of linearity of h. Results are presented under different sample sizes n ∈
{500�1000�5000} and instrument strength ξ ∈ {0�3�0�5�0�7}. It also reports our adaptive
test with different K(J) and Ĵ (which is defined the same way as that in Table I). We note
that Ĵ is again weakly increasing with sample size and with instrument strength. While
the JH test can be slightly over-sized, our adaptive test T̂n provides adequate size control
across different sample size n, different instrument strength ξ, and different K(J). The
difference in empirical size of our adaptive test with differentK(J) is again small for large
n, which is consistent with our theory.

Power

Figure 4 provides empirical power curves for the 5% level tests with sample sizes
n ∈ {500�5000}. From this figure, we see that our adaptive test T̂n (dashed plus lines with
K(J) = 4J and solid circle lines withK(J) = 8J) has power similar to the asymptotic t-test
(dotted triangle lines) and the JH test (dotted square lines) for a simple quadratic alterna-
tive with cB = 0. When the alternative function in (5.3) becomes more nonlinear/complex
with cB = 0�5, our adaptive test becomes more powerful than the JH test. This is theo-
retically sensible since the Horowitz (2006) test is designed to have power against n−1/2

smooth alternative only. Since our adaptive test is slightly under-sized for small sample
sizes or for weak instrument strength, the size-adjusted empirical power of our test is
even better (see our arXiv:2006.09587v3 version). To sum up, our adaptive minimax test
not only controls size, but also has very good finite-sample power uniformly against a large
class of nonparametric alternatives.

Finally, in Supplemental Appendix C, we present additional simulation comparisons
of our adaptive test against our adaptive version of Bierens’s (1990) type test when the
dimension of conditional instrument W is larger than the dimension of the endogenous
variables X . We observe that our adaptive test T̂n again has size control and even better
finite-sample power when dw > dx.
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2050 C. BREUNIG AND X. CHEN

FIGURE 4.—Testing parametric form—empirical power of our adaptive test T̂n withK(J) = 4J (dashed plus
lines) and K(J) = 8J (solid circle lines), of JH test (dotted square lines), and of t-test (dotted triangle lines).
True DGP from Section 5.2 using NPIV function (5.3). Alternatives are quadratic when cB = 0 and more
complex for cB = 0�5.

6. EMPIRICAL APPLICATIONS

We present two empirical applications of our adaptive test for NPIV models. The first
one tests for connected substitutes restrictions in differentiated products demand using
market level data. The second one tests for monotonicity, convexity, or parametric spec-
ification of Engel curves for non-durable good consumption using household level data.
The applications demonstrate that our simple adaptive test is powerful to detect economic
shape restrictions.

In both empirical applications, we implement our adaptive test T̂n given in (2.12)
with K(J) = 4J. The null hypothesis is rejected at the nominal level α = 0�05 whenever
ŴJ(α) > 1 for some J ∈ În (the RES index set). Let Ĵ be {J ∈ În : ŴJ(α) > 1} when our
test rejects the null, and be arg maxJ∈În ŴJ(α) when our test fails to reject the null. Let Ĵ
be the minimal integer of Ĵ ⊂ În. Tables in this section report Ĵ and ŴĴ . We also report
the corresponding p value, which should, by Bonferroni correction, be compared to the
nominal level α= 0�05 divided by the cardinality of În. Finally, since our test is based on
a leave-one-out version, the value of ŴĴ could be negative.

6.1. Adaptive Testing for Connected Substitutes in Demand for Differential Products

Berry and Haile (2014) provided conditions under which a nonparametric demand sys-
tem for differentiated products can be inverted to NPIV equations using market level
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2051

data. A key restriction is what they called “connected substitutes.” Compiani (2022) ap-
plied their nonparametric identification results and estimated the system of inverse de-
mand by directly imposing the connected substitutes restrictions in his implementation of
sieve NPIV estimator, and obtained informative results as an alternative to BLP demand
in simulation studies and a real data application.

We revisit Compiani (2022)’s empirical application using the 2014 Nielsen scanner data
set that contains market (store/week) level data of consumers in California choosing from
organic strawberries, non-organic strawberries, and an outside option. While Compiani
(2022) directly imposed “connected substitutes” restriction in his sieve NPIV estimation
of inverse demand, we want to test this restriction. Following Compiani (2022), we con-
sider

Xo +U = h(P� So� Sno� In)� E[U|Wp�Xo�Xno� In] = 0�

where h denotes the inverse of the demand for organic strawberries, Xo denotes a mea-
sure of taste for organic products, Xno denotes the availability of other fruit, So and Sno
denote the endogenous shares of the organic and non-organic strawberries, respectively.
(Xo�Xno) are the two included instruments for the two endogenous shares (So�Sno). In
denotes store level (zip code) income and U unobserved shocks for organic produce. The
vector P = (Po�Pno�Pout) denotes the endogenous prices of organic strawberries, non-
organic strawberries, and non-strawberry fresh fruit, respectively. We follow Compiani
(2022) and let Wp = (Wo�Wno�Wout�Ws1�Ws2) be a five-dimensional vector of conditional
instruments for the price vector P, including three Hausman-type instrumental variables
(Wo�Wno�Wout) and two shipping-point spot prices (Ws1�Ws2) (as proxies for the wholesale
prices faced by retailers).

As shown by Compiani (2022, Lemma 1), the connected substitutes assumption of
Berry and Haile (2014) implies the following shape restrictions on the function h: First,
h is weakly increasing in the organic product price Po. Second, h is weakly increasing in
the organic product share So. Third, h is weakly increasing in the non-organic product
share Sno. Fourth, ∂h/∂so ≥ ∂h/∂sno (the so-called diagonal dominance). Below, we test
for these inequality restrictions.

We use the data set of Compiani (2022),6 where income ranges from the first and to
the third quartile of its distribution and prices for organic produces are restricted to be
above its 1st and below its 99th percentile. The resulting sample has size n= 11910. We
implement our adaptive test T̂n by making use of a semiparametric specification of the
function h: we consider the tensor product of quadratic B-splines ψJ1 (Po) and the vector
(1� In�Pno�ψ3(So)), where we use a cubic B-spline transformation of So without knots
and without intercept, hence J = 6J1. The variables (Pout� Sno� SnoPno� SnoSo) are included
additively and we set K(J) = 4J. We obtain the RES index set În ={22�28�34}.

According to Table III, at the nominal level α = 0�05, our adaptive test fails to reject
that h is weakly increasing in the own price (but rejects ∂h/∂po ≤ 0), and fails to reject that
h is weakly increasing in the own share (but rejects ∂h/∂so ≤ 0). Our test fails to reject
that h is weakly increasing or decreasing in the non-organic share (i.e., fails to reject a
constant partial effect of h with respect to the non-organic share). Our test also fails to
reject the diagonal dominance (but rejects ∂h/∂so ≤ ∂h/∂sno). In summary, our adaptive
test provides strong empirical evidence for the connected substitutes restriction.

6For details on the construction of the data and descriptive statistics, see Compiani (2022, Appendix F).
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2052 C. BREUNIG AND X. CHEN

TABLE III

ADAPTIVE TESTING FOR THE SHAPE OF h (THE INVERSE DEMAND FOR ORGANIC PRODUCE).

H0 ŴĴ p val. reject H0? Ĵ

∂h/∂po ≥ 0 0�854 0.031 no {34}
∂h/∂po ≤ 0 3�154 0.000 yes {28�34}
∂h/∂so ≥ 0 0�661 0.057 no {34}
∂h/∂so ≤ 0 2�022 0.001 yes {22�28�34}
∂h/∂sno ≥ 0 −0�115 0.471 no {22}
∂h/∂sno ≤ 0 −0�238 0.734 no {22}
∂h/∂so ≥ ∂h/∂sno 0�663 0.057 no {34}
∂h/∂so ≤ ∂h/∂sno 2�022 0.001 yes {22�28�34}

6.2. Adaptive Testing for Engel Curves

The system of Engel curves plays a central role in the analysis of consumer demand
for non-durable goods. It describes the ith household’s budget share Y��i for non-durable
goods � as a function of its log-total expenditure Xi and other exogenous characteristics
such as family size and age of the head of the ith household. The most popular class of
parametric demand systems is the almost ideal class, pioneered by Deaton and Muell-
bauer (1980), where budget shares are assumed to be linear in log-total expenditure.
Banks, Blundell, and Lewbel (1997) proposed a popular extension of this system of lin-
ear Engel curves to include a squared term in log-total expenditure, and their parametric
Student t-test rejects linear form in favor of quadratic Engel curves.

Blundell, Chen, and Kristensen (2007) estimated a system of nonparametric Engel
curves as functions of endogenous log-total expenditure and family size, using log-gross
earnings of the head of household as a conditional instrumentW . We use a subset of their
data from the 1995 British Family Expenditure Survey, with the head of household aged
between 20 and 55 and in work, and household with one or two children. This leaves a
sample of size n= 1027. As an illustration we consider Engel curves h�(X) for four non-
durable goods �: “food in,” “fuel,” “travel,” and “leisure”: E[Y� − h�(X)|W ] = 0. We use
the same quadratic B-spline basis with up to three knots to approximate all the Engel
curves and set K(J) = 4J. Hence, the RES index set În = {3�4�5} is the same for the
different Engel curves.

Table IV reports our adaptive test for weak monotonicity of Engel curves. It shows that
our test rejects increasing Engel curves for “food in,” “fuel,” and “travel” categories, and
also rejects decreasing Engel curve for “leisure” at the 0�05 nominal level. Previously, to
decide whether the Engel curves are strictly monotonic, estimated derivatives of these

TABLE IV

ADAPTIVE TESTING FOR MONOTONICITY OF ENGEL CURVES.

H0: h is increasing H0: h is decreasing

Goods ŴĴ p value reject H0? Ĵ ŴĴ p value reject H0? Ĵ

“food in” 2.871 0.000 yes {3} −0�324 0.852 no {4}
“fuel” 8.192 0.000 yes {3�4�5} 0�547 0.072 no {3}
“travel” 2.527 0.000 yes {3�4} 0�381 0.124 no {3}
“leisure” 0.299 0.165 no {4} 4�552 0.000 yes {3�4}
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2053

TABLE V

ADAPTIVE TESTING FOR CONVEXITY/CONCAVITY OF ENGEL CURVES.

H0: h is convex H0: h is concave

Goods ŴĴ p value reject H0? Ĵ ŴĴ p value reject H0? Ĵ

“food in” −0�287 0.791 no {4} −0�324 0.853 no {3}
“fuel” −0�325 0.844 no {3} 1�621 0.001 yes {3}
“travel” 1�188 0.007 yes {3} −0�322 0.837 no {5}
“leisure” −0�197 0.656 no {5} 0�691 0.047 no {4}

functions together with their non-adaptive 95% uniform confidence bands were also pro-
vided in Chen and Christensen (2018, Figure 4). Those uniform confidence bands are
constructed using sieve score bootstrapped critical values with non-data-driven choice of
sieve dimension J, and contain zero almost over the whole support of household expendi-
ture. It is interesting to see that our adaptive test is more informative about monotonicity
in certain directions that are not obvious from their 95% uniform confidence bands. Ta-
ble V reports our adaptive test for convexity and concavity of these Engel curves. At the
5% nominal level, we reject convexity of travel goods and reject concavity of Engel curves
for fuel consumption. These are in line with Chen and Christensen (2018, Figure 4), but
again, statistically significant statements about the convexity/concavity of Engel curves are
only possible using our adaptive testing procedure. Finally, Table VI presents our adap-
tive tests for linear or quadratic specifications (against nonparametric alternatives) of the
Engel curves for the four goods. At the nominal level α= 0�05, this table shows that our
adaptive test fails to reject a quadratic form for all the goods, while it rejects a linear Engel
curve for fuel and travel goods. Our results are consistent with the conclusions obtained
by Banks, Blundell, and Lewbel (1997) using Student t-test for linear against quadratic
forms of Engel curves.

APPENDIX A: PROOFS OF THEOREMS 3.1 AND 3.2 IN SECTION 3

PROOF OF THEOREM 3.1. We first derive the lower bound for testing a simple null
hypothesis H0 = {h0}. Let Pθ denote the joint distribution of (Y�X�W ) satisfying Y =
Thθ + V with known operator T and V|W ∼ N (0�σ2), the so-called reduced-form non-
parametric indirection regression (NPIR) model as in Chen and Reiß (2011) with fixed
variance σ2 > 0. We may assume that {λj� ψ̃j� b̃j} forms a singular value decomposition
of the compact operator T . To establish the lower bound, a consideration of the NPIR
model is sufficient, as we show in the first inequality of (A.4) below.

TABLE VI

ADAPTIVE TESTING FOR LINEAR/QUADRATIC SPECIFICATION OF ENGEL CURVES.

H0: h is linear H0: h is quadratic

Goods ŴĴ p value reject H0? Ĵ ŴĴ p value reject H0? Ĵ

“food in” −0�273 0.781 no {3} 0�125 0.272 no {3}
“fuel” 1�623 0.001 yes {3} −0�120 0.540 no {5}
“travel” 1�210 0.006 yes {3} −0�014 0.407 no {4}
“leisure” 0�691 0.047 no {4} 0�513 0.086 no {4}
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2054 C. BREUNIG AND X. CHEN

By Reiß (2008), the reduced-form NPIR is asymptotic equivalent to the Gaussian
white noise model dY (w) = Thθ(w) dw+ σ√

n
dB(w) where dB is a Gaussian white noise

in L2
W := {φ : ∫W[φ(w)]2 dw < ∞} and, in particular, to the Gaussian sequence model

yk = ∫
Thθ(w)b̃k(w) dw+ σ√

n
ξk, yk := ∫

b̃k(w) dY (w) and ξk ∼ N (0�1). Without loss of
generality, we let h0 = 0 and H0 = {0}. We introduce θ = (θj)j≥1 with θj ∈ {−1�1} and
introduce the test function

hθ(·) = δ∗√
n

J∗∑
j=1

ν−2
j θjψ̃j(·)

(
J∗∑
j=1

ν−4
j

)−1/4

� (A.1)

for some sufficiently small δ∗ := δ∗(α) > 0. Here, {ψ̃j}j≥1 forms an orthonormal basis in
L2(X) and the dimension parameter J∗ satisfies the inequality restriction

1
n

(
J∗∑
j=1

ν−4
j j

4p/dx

)1/2

≤ C2
H� (A.2)

Therefore, orthonormality of the basis functions {ψ̃j}j≥1 in L2(X) together with the
Cauchy–Schwarz inequality implies for any θ ∈{±1}J with any J ≥ J∗:

∞∑
j=1

〈hθ� ψ̃j〉2
Xj

2p/dx = δ2
∗
n

J∗∑
j=1

ν−4
j j

2p/dx

(
J∗∑
l=1

ν−4
l

)−1/2

≤ δ2
∗
n

(
J∗∑
j=1

ν−4
j j

4p/dx

)1/2

≤ C2
H

for all δ∗ ∈ (0�1], and thus, we conclude that hθ ∈ H by the definition of the Sobolev
ellipsoid H. For any θ ∈{±1}J∗ , we have

‖hθ −H0‖L2(X) = ‖hθ‖L2(X) = δ∗√
n

(
J∗∑
j=1

ν−4
j

)1/4

= δ∗rn� (A.3)

and hence, hθ ∈H1(δ∗rn).
Let P∗ denote the probability distribution obtained of the NPIR model by assigning

the uniform distribution on {±1}J∗ and P0 the probability distribution when hθ = 0. From
the proof of Collier, Comminges, and Tsybakov (2017, Lemma 3), we infer the following
reduction to testing between two probability measures under a simple null hypothesis.
Using that hθ ∈H1(δ∗rn) for all θ ∈{±1}J∗ , we thus evaluate

inf
Tn

{
sup
h∈H0

Ph(Tn = 1) + sup
h∈H1(δ∗rn)

Ph(Tn = 0)
}

≥ inf
Tn

{
P0(Tn = 1) + sup

θ∈{±1}J∗
Pθ(Tn = 0)

}
≥ inf

Tn

{
P0(Tn = 1) + P∗(Tn = 0)

}
≥ 1 − V

(
P∗�P0

)≥ 1 −
√
χ2
(
P∗�P0

)
� (A.4)

where V (·� ·) denotes the total variation distance and χ2(·� ·) denotes the χ2 divergence.
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2055

Since Tψ̃k = λkb̃k, we have yk = γkθk + σ√
n
ξk, where γk := δ∗n−1/2λkν

−2
k (

∑J∗
j=1 ν

−4
j )−1/4.

Consequently, by the derivation of equation (2.106) in Tsybakov (2009), the χ2 divergence
between P∗ and P0 satisfies

χ2
(
P∗�P0

)=
∫ (

dP∗

dP0

)2

dP0 − 1 =
J∗∏
k=1

exp
(−nγ2

k/σ
2
)+ exp

(
nγ2

k/σ
2
)

2
− 1�

By Tsybakov (2009, Section 2.7.5), there exists a constant c1 > 0 such that exp(−nγ2
k/σ

2)+
exp(nγ2

k/σ
2) ≤ 2 exp(c1n

2γ4
k). Assumptions 1(iii), (iv) imply for a finite constant c > 0 that

λ2
j ≤ cν2

j for all j. Consequently,
∑J∗

k=1 γ
4
k ≤ c2δ4

∗n
−2, and we obtain:

χ2
(
P∗�P0

)≤ exp

(
c1n

2
J∗∑
k=1

γ4
k

)
− 1 ≤ exp

(
δ4

∗c1c
2
)− 1 ≤ 1 − α�

for δ∗ = δ∗(α) > 0 sufficiently small. Consequently, the result follows by making use of
inequality (A.4).

In the regularly varying case (ν−4
J∗ J∗ �

∑J∗
j=1 ν

−4
j ) for J∗ ∼ max{J : n−1/2J1/4ν−1

J ≤ J−p/dx},
we note that inequality (A.2) holds within a constant and we have rn = n−1/2(

∑J∗
j=1 ν

−4
j )1/4 ∼

n−1/2J1/4
∗ ν−1

J∗ ∼ J−p/dx∗ . Consider the mildly ill-posed case (νj = j−a/dx). The choice of J∗ ∼
n2dx/(4(p+a)+dx) ensures constraint (A.2) within a constant and implies rn ∼ n−2p/(4(p+a)+dx) .
Consider the severely ill-posed case (νj = exp(−ja/dx/2)). The choice of J∗ = (c logn)dx/a
satisfies (A.2) within a constant and implies rn ∼ (logn)−p/a, which completes the proof
for the simple null H0 ={0} case.

We now turn to the lower bound for testing a closed convex composite null hypothe-
sis. Consider the test function given in equation (A.1). Since H0 is a nonempty, closed
and convex, strict subset of H, there exists a unique element �H0h ∈ H0 (by the Hilbert
projection theorem) such that

‖hθ −H0‖L2(X) = ‖hθ −�H0hθ‖L2(X) ≥ ‖hθ∗ −�H0hθ∗‖L2(X) (A.5)

for some θ∗ ∈ {±1}J∗ . As above, we may assume �H0hθ∗ = 0 without loss of generality
(otherwise, consider Ỹ = Y − T�H0hθ∗ in the reduced-form NPIR model). Given the
inequality (A.5), we thus conclude ‖hθ − H0‖L2(X) ≥ ‖hθ∗‖L2(X) ≥ δ∗rn, by following in-
equality (A.3). Therefore, we may proceed with the proof of the lower bound as for the
simple null case. Q.E.D.

LEMMA A.1: Let Assumptions 1(i)–(iii) and 2 hold. Then, under the simple hypothesis
H0 ={h0} for a known function h0, we have Ph0 (nD̂J(h0)/V̂J > ηJ(α)) = α+ o(1).

A proof of Lemma A.1 is given in Supplemental Appendix E.

PROOF OF THEOREM 3.2. First, by Lemma A.1, we control the type I error of the test
Tn�J given in (3.5): lim supn→∞ Ph0 (Tn�J = 1) = lim supn→∞ Ph0 (nD̂J(h0) >ηJ(α)V̂J) ≤ α. To
control the type II error, we have uniformly for h ∈H1(δ◦rn�J),

Ph(Tn�J = 0) ≤ Ph
(
nD̂J(h0) ≤ ηJ(α)V̂J� V̂J ≤ (1 + c0)VJ

)+ Ph
(
V̂J > (1 + c0)VJ

)
≤ Ph

(
nD̂J(h0) ≤ (1 + c0)ηJ(α)VJ

)+ o(1) = o(1)�
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2056 C. BREUNIG AND X. CHEN

where the second equation is due to Lemma B.4(i) and the last equation is due to
Lemma B.7(i) in Appendix B. We thus obtain Result (3.7). Note that ν−2

J ≥ cs−2
J by

Assumption 3, with the definition of J∗0, the final rate results for the mildly ill-posed
case (νj = j−a/dx) and for the severely ill-posed case (νj = exp(−ja/dx/2)) follow from
rn�J∗0 = (J∗0)−p/dx directly. Q.E.D.

APPENDIX B: PROOFS OF THEOREMS 4.1 AND 4.2 IN SECTION 4

We first introduce additional notation. For a r × c matrix M with r ≤ c and full
row rank r, we let M−

l denote its left pseudoinverse, namely (M ′M)−M ′. The J × K

matrices Â and A defined in Section 2.2 can be written as Â = (Ĝ−1/2
b ŜĜ−1/2)−

l Ĝ
−1/2
b

and A = (G−1/2
b SG−1/2)−

l G
−1/2
b . Then ‖AG1/2

b ‖ = ‖(G−1/2
b SG−1/2)−

l ‖ = s−1
J with sJ =

smin(G−1/2
b SG−1/2) > 0. Let b̃K(·) =G−1/2

b bK(·) and ψ̃J(·) =G−1/2ψJ(·). For any h ∈L2(X),
its population 2SLS projection onto the sieve space �J is

QJh(·) = ψ̃J(·)′AE
[
bK(W )h(X)

]= ψ̃J(·)′(G−1/2
b SG−1/2

)−
l

E
[
b̃K(W )h(X)

]
� (B.1)

We next present Theorem B.1 and eight lemmas (Lemma B.1–Lemma B.8) that are used
to establish our adaptive testing upper bounds. The proofs of these results are postponed
to Supplemental Appendix E. Below, we shorten “with probability Ph approaching 1 uni-
formly for h ∈H” to “wpa1 uniformly for h ∈H.”

THEOREM B.1: Let Assumptions 1(ii)–(iii) and 2 hold. Then, wpa1 uniformly for h ∈H:

D̂J(�H0h) − ∥∥QJ(h−�H0h)
∥∥2

L2(X)
� n−1s−2

J

√
J + n−1/2s−1

J

(‖h−�H0h‖L2(X) + J−p/dx)�
Theorem B.1 provides an upper bound for quadratic distance estimation, which is es-

sential for our upper bound on the minimax rate of testing in L2.

LEMMA B.1: Let Assumption 2(iv) hold. Then we have uniformly for h ∈H: (i) ‖QJ(h−
�H0h)‖L2(X) = ‖h−�H0h‖L2(X) +O(J−p/dx) and (ii) ‖QJh− h‖L2(X) =O(J−p/dx).

LEMMA B.2: Let Assumption 2(i) hold. Then: VJ ≤ σ2s−2
J

√
J uniformly for h ∈ H and

J ∈ In.

LEMMA B.3: Let Assumption 1(i) hold. Then: J ≤∑J

j=1 s
−4
j ≤ σ−4V 2

J uniformly for h ∈H
and J ∈ In.

LEMMA B.4: Let Assumption 1(i)–(iii) be satisfied.
(i) If, in addition, Assumption 2 holds, then for any c > 0, we have

sup
h∈H

Ph
(|1 − V̂J/VJ|> c

)= o(1)�

(ii) If, in addition, Assumptions 2(i) and 4(i) hold, then for any c > 0, we have

sup
h∈H

Ph
(

max
J∈In

|1 − V̂J/VJ|> c
)

= o(1)�
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2057

LEMMA B.5: For all α ∈ (0�1) and J ∈ În, we have for n sufficiently large and almost
surely that √

log log(J) − log(α)

4
≤ η̂J(α) ≤ 4

√
log log(n) − log(α)�

For any h ∈ H, let UJ
i :=AbK(Wi)(Yi −�H0h(Xi)) with Uij as its jth entry, 1 ≤ j ≤ J.

Then QJ(h− �H0h) = Eh[UJ]′ψ̃J and ‖Eh[UJ]‖2 = ‖QJ(h−�H0h)‖2
L2(X) for any NPIV

function h ∈H. Let Zi = (Yi�X ′
i �W

′
i )′. For any set Di, we define

R(Zi�Zi′�Di) := (
UJ
i 1Di

)′(
UJ
i′1Di′

)− Eh

(
UJ
i 1Di

)′
Eh

(
UJ
i 1Di

)
�

R1(Zi�Zi′) := R(Zi�Zi′�Mi) and R2(Zi�Zi′) := R(Zi�Zi′�Mc
i ), where Mi = {|Yi −

�H0h(Xi)|≤Mn} and Mn = √
nζ−1

J
(log logJ)−3/4. Let

�1 :=
(
n(n− 1)

2
E
[
R2

1(Z1�Z2)
])1/2

�

�2 := n sup
‖ν‖

L2(Z)≤1�‖κ‖
L2(Z)≤1

E
[
R1(Z1�Z2)ν(Z1)κ(Z2)

]
�

�3 :=
(
n sup

z

∣∣E[R2
1(Z1� z)

]∣∣)1/2
� and �4 := sup

z1�z2

∣∣R1(z1� z2)
∣∣�

LEMMA B.6: (i) There exists a generic constant CR1 > 0, such that for all u > 0 and n ∈N,
we have

Ph

(∣∣∣∣ ∑
1≤i<i′≤n

R1(Zi�Zi′)
∣∣∣∣≥ CR1

(
�1

√
u+�2u+�3u

3/2 +�4u
2
))≤ 6 exp(−u)�

(ii) Let Assumption 2(i) hold. Then, for the kernel R1, the following hold under H0:

�1 ≤
√
n(n− 1)/2VJ� �2 ≤ σ2ns−2

J �

�3 ≤ σ2√nMnζb�Ks
−2
J � �4 ≤M2

nζ
2
b�Ks

−2
J �

LEMMA B.7:
(i) Under the conditions of Theorem 3.2, we have for some constant c0 > 0 that

Ph(nD̂J(h0) ≤ (1 + c0)ηJ(α)VJ) = o(1) uniformly for h ∈H1(δ◦rn�J).
(ii) Under the conditions of Theorem 4.1, we have Ph(nD̂J∗ (h0) ≤ 2c1

√
log lognVJ∗) =

o(1) uniformly for h ∈H1(δ◦rn), where J∗ and c1 are given in the proof of Theorem 4.1.

LEMMA B.8: Let Assumption 4(i)(iii) be satisfied. Then Ĵmax given in (2.11) satisfies
(i) suph∈H Ph(Ĵmax > J) = o(1); and

(ii) suph∈H Ph(2J◦ > Ĵmax) = o(1) under Assumption 3.

PROOF OF THEOREM 4.1. We prove this result in three steps. First, we bound the
type I error of the test statistic T̃n = 1{maxJ∈In (nD̂J(h0)/(η′

J(α)VJ)) > 1}, η′
J(α) :=

(1 − c0)
√

log logJ − logα/4 for some constant 0 < c0 < 1. Second, we bound the type
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2058 C. BREUNIG AND X. CHEN

II error of T̃n where η′
J(α) is replaced by η′′(α) := 4(1 + c0)

√
log logn− logα. Third, we

show that the derived bounds in Steps 1 and 2 are sufficient to control the type I and type
II errors of our adaptive test T̂n for a simple null hypothesis H0 ={h0}.

Step 1: To control the type I error of T̃n, we use a decomposition under H0 = {h0} via
the U-statistic UJ�l = 2

n(n−1)

∑
1≤i<i′≤n Rl(Zi�Zi′) for l= 1�2 and Ui = Yi − h0(Xi):

Ph0 (̃Tn = 1) ≤ Ph0

(
max
J∈In

∣∣∣∣∣ 1
η′
J(α)VJ(n− 1)

J∑
j=1

∑
i �=i′
UijUi′j

∣∣∣∣∣
+ max

J∈In

∣∣∣∣ 1
η′
J(α)VJ(n− 1)

∑
i �=i′
UiUi′b

K(Wi)′(A′A− Â′Â
)
bK(Wi′)

∣∣∣∣> 1

)
≤ I + II + III�

with I := Ph0 (maxJ∈In|nUJ�1/(η′
J(α)VJ)|> 1

4 ), II := Ph0 (maxJ∈In|nUJ�2/(η′
J(α)VJ)|> 1

4 ),

III := Ph0

(
max
J∈In

∣∣∣∣ 1
η′
J(α)VJ(n− 1)

∑
i �=i′
UiUi′b

K(Wi)′(A′A− Â′Â
)
bK(Wi′)

∣∣∣∣> 1
2

)
�

First, we consider term III. Using the definition of η′
J(α) and the fact that√

log logJ − logα >
√

log logJ for any α ∈ (0�1), we obtain III = o(1) by applying
Lemma E.6.

Next, we consider term I. Define �(u�J) := �1
√
u + �2u + �3u

3/2 + �4u
2. By

Lemma B.6(ii) with Mn = √
nζ−1

J
(log logJ)−3/4, we have for all J ∈ In:

�(u�J) ≤ nVJ
√
u/2 + σ2ns−2

J u+ σ2ns−2
J (log logJ)−3/4u3/2 + ns−2

J (log logJ)−3/2u2

for n sufficiently large. Replacing in the previous inequality u by uJ = 2 log logJcα where
cα =√

1 + (π/ log 2)2/
√
α, we obtain for n sufficiently large:

�(uJ� J) ≤ nVJ
√

log logJcα + 2σ2n

s2
J

log logJcα + σ2n

s2
J

(
2 log logJcα

)3/4 + 4n
s2
J

√
log logJcα

≤ 5
4
nVJ

√
log logJ − logα+ 3σ2ns−2

J (log logJ − logα)

≤ 5
1 − c0

nVJη
′
J(α) + 12σ2

1 − c0
ns−2

J η
′
J(α)

√
log logJ�

by the definition of η′
J(α). Since s−2

J

√
J ∼ VJ uniformly in h ∈ H and J ∈ In (by Assump-

tion 4(ii), Lemmas B.2 and B.3), we have VL/VJ � s−2
L s

2
J

√
L/J = o(1) for all L= o(J) uni-

formly in h ∈H and J ∈ In. Thus, for all J ∈ In and for n sufficiently large: �(uJ�L(J)) ≤
CR1

n−1
8 VJη

′
J(α) with L(J) = exp(1/6)JJ−1/2. By Lemma B.6(i) with u = 2 log logJcα and

the fact that J = J2j for all J ∈ In, we obtain for n sufficiently large:

I ≤
∑
J∈In

Ph0

(
|nUJ�1|> η′

J(α)
4

VJ

)
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2059

=
∑
J∈In

Ph0

(∣∣∣∣∑
i<i′
R1(Zi�Zi′)

∣∣∣∣≥ η′
J(α)
4

n− 1
2

VJ

)

≤
∑
J∈In

Ph0

(∣∣∣∣∑
i<i′
R1(Zi�Zi′)

∣∣∣∣≥ CR1�
(
uJ�L(J)

))
≤ 6

∑
J∈In

exp
(−2 log log

(
L(J)cα

))
�

Using the fact that
∑

j≥1 j
−2 = π2/6, we obtain

I ≤ 6c−2
α

∑
J∈In

(
logL(J)

)−2

≤ α 6
1 + (π/ log 2)2

∑
j≥0

(1/6 + j log 2)−2

≤ α 6
1 + (π/ log 2)2

(
1/6 + (log 2)−2

∑
j≥1

j−2

)
= α�

Consider term II. Since Eh0 |U1{|U|>Mn}|≤M−3
n Eh0 [U41{|U|>Mn}] ≤M−3

n Eh0 [U4], Markov’s
inequality yields

II ≤ Eh0 max
J∈In

∣∣∣∣ 4
η′
J(α)VJ(n− 1)

∑
i<i′
Ui1Mc

i
Ui′1Mc

i′b
K(Wi)′A′AbK(Wi′)

∣∣∣∣
≤ 4nEh0 |U1{|U |>Mn}|Eh0 |U1{|U |>Mn}|max

J∈In

ζ2
J

∥∥(G−1/2
b SG−1/2

)−
l

∥∥2

η′
J(α)VJ

≤ 4nM−6
n

(
Eh0

[
U4

])2
ζ2
J

max
J∈In

s−2
J

η′
J(α)VJ

�

where the fourth moment of U = Y − h0(X) is bounded under Assumption 2(i).
Lemma B.3 implies s−2

J ≤ σ−2VJ . By the definition of Mn = √
nζ−1

J
(log logJ)−3/4 and As-

sumption 4(i), we obtain II = o(n−2(log logJ)9/2ζ8
J
) = o(1).

Step 2: We control the type II error of the test statistic T̃n where η′
J(α) is replaced

by η′′(α) > 0. From the definition J = sup{J : s−1
J ζ

2
J

√
(logJ)/n ≤ c}, we infer that the

dimension parameter J◦ given in (4.3) satisfies J ≤ J◦ ≤ J/2 for c sufficiently large by
Assumptions 3 and 4(iii). Thus, by the construction of the set In, there exists J∗ ∈ In such
that J◦ ≤ J∗ < 2J◦. Let K∗ =K(J∗). We note that for all h ∈H1(δ◦rn):

Ph (̃Tn = 0) = Ph
(
nD̂J(h0) ≤ η′′(α)VJ for all J ∈ In

)
≤ Ph

(
nD̂J∗ (h0) ≤ c1

√
log logn− logαVJ∗

)
with c1 = 4(1 + c0), by the definition of η′′(α). Note that log logn− logα= (log logn)[1 −
(logα)/(log logn)] ≤ 2 log logn for all n sufficiently large. Consequently, we may apply
Lemma B.7(ii) which implies Ph (̃Tn = 0) = o(1) uniformly for h ∈H1(δ◦rn).
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2060 C. BREUNIG AND X. CHEN

Step 3: Finally, we account for estimation of the normalization factor VJ and for esti-
mation of upper bound of the RES index În. We control the type I error of the test T̂n
under simple null hypotheses as follows. The lower bound in Lemma B.5 implies

Ph0 (̂Tn = 1) ≤ Ph0

(
max
J∈În

{
nD̂J(h0)/

(
η′
J(α)V̂J

)}
> (1 − c0)−1

)
≤ Ph0

(
max
J∈In

{
nD̂J(h0)/

(
η′
J(α)V̂J

)}
> (1 − c0)−1�

V̂J ≥ (1 − c0)VJ for all J ∈ In
)

+ Ph0

(
V̂J < (1 − c0)VJ for all J ∈ In

)+ Ph0 (Ĵmax > J)

≤ Ph0

(
max
J∈In

{
nD̂J(h0)/

(
η′
J(α)VJ

)}
> 1

)
+ Ph0

(
max
J∈In

|V̂J/VJ − 1|> c0

)
+ o(1) ≤ α+ o(1)�

where the third inequality is due to Lemmas B.8(i) and B.4(ii), and the last inequality is
due to Step 1 of this proof. To bound the type II error of the test T̂n, recall the definition
of J∗ ∈ In given in Step 2 of this proof. Using the upper bound of Lemma B.5 together
with Lemmas B.8(ii) and B.4, we evaluate uniformly for h ∈H1(δ◦rn):

Ph (̂Tn = 0) ≤ Ph
(
nD̂J∗ (h0) ≤ (1 + c0)−1η′′(α)V̂J∗

)+ Ph
(
J∗ > Ĵmax

)
≤ Ph

(
nD̂J∗ (h0) ≤ (1 + c0)−1η′′(α)V̂J∗� V̂J∗ ≤ (1 + c0)VJ∗

)
+ Ph

(
V̂J∗ > (1 + c0)VJ∗

)+ o(1)

≤ Ph
(
nD̂J∗ (h0) ≤ η′′(α)VJ∗

)+ o(1) = o(1)�

where the last equation is due to Step 2 of this proof.
Since both the mildly ill-posed and severely ill-posed are special cases of regularly

varying, the rest of the results follow. In the mildly ill-posed case, we obtain J◦ ∼
(n/

√
log logn)2dx/(4(p+a)+dx) which implies rn ∼ (

√
log logn/n)2p/(4(p+a)+dx) . In the severely

ill-posed case, note that if J◦ ∼ (c logn)dx/a for some constant c ∈ (0�1), then we obtain
n−1/2(J◦ log logn)1/4s−1

J◦ � (J◦)−p/dx ∼ (logn)−p/a. Q.E.D.

PROOF OF THEOREM 4.2. We prove this result in three steps. First, we bound the type
I error of the test statistic T̃n = 1{maxJ∈In{nD̂J/(η′

J(α)VJ)}> 1}, where η′
J(α) is given

in the proof of Theorem 4.1. Second, we bound the type II error of T̃n, where η′
J(α) is

replaced by η′′(α) given in the proof of Theorem 4.1. Third, we show that Steps 1 and
2 are sufficient to control the type I and type II errors of our adaptive test T̂n for the
composite null.

Step 1: We control the type I error of the test statistic T̃n using the decomposition

n(n− 1)D̂J =
∑
i �=i′

(
Yi − ĥR

J (Xi)
)(
Yi′ − ĥR

J (Xi′)
)
bK(Wi)′Â′ÂbK(Wi′)

=
∥∥∥∥∑

i

(
Yi − ĥR

J (Xi)
)
ÂbK(Wi)

∥∥∥∥2

−
∑
i

∥∥(Yi − ĥR
J (Xi)

)
ÂbK(Wi)

∥∥2
�
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2061

For any h ∈ H0, we define h∗
J := arg minφ∈H0�J

‖∑i(φ− h)(Xi)ÂbK(Wi)‖. The definition
of the restricted NPIV estimator ĥR

J ∈H0�J in (2.6) yields for all h ∈H0:∥∥∥∥∑
i

(
Yi − ĥR

J (Xi)
)
ÂbK(Wi)

∥∥∥∥
≤
∥∥∥∥∑

i

(
Yi − h∗

J(Xi)
)
ÂbK(Wi)

∥∥∥∥
≤
∥∥∥∥∑

i

(
Yi − h(Xi)

)
ÂbK(Wi)

∥∥∥∥+
∥∥∥∥∑

i

(
h− h∗

J

)
(Xi)ÂbK(Wi)

∥∥∥∥�
By Lemma B.9 (see below), uniformly for J ∈ In, we have

nD̂J

η′
J(α)VJ

− nD̂J(h)
η′
J(α)VJ

�
(
VJ

√
(log logJ)/J

)−1/2
n−1

∑
i

(
Yi − h(Xi)

)
bK(Wi)′Â′ÂbK(Wi)

(
ĥR
J − h)(Xi)

+ (
VJ

√
(log logJ)/J

)−1/2
∥∥∥∥ 1√

n

∑
i

(
Yi − h(Xi)

)
ÂbK(Wi)

∥∥∥∥
=: (VJ√(log logJ)/J

)−1/2
(T1�J + 2T2�J)

wpa1 uniformly for h ∈ H0, where D̂J(h) is given in (3.4) (with h0 replaced by h=�H0h
under H0). Now we may follow Step 1 of the proof of Theorem 4.1 and obtain

lim sup
n→∞

sup
h∈H0

Ph
(

max
J∈In

{
nD̂J(h)/

(
η′
J(α)VJ

)}
> 1/4

)
≤ α�

It remains to control T1�J and T2�J . Consider T1�J . For all J ∈ In, we evaluate

T1�J = 1
n

∑
i

(
Yi − h(Xi)

)
bK(Wi)′A′AbK(Wi)

(
ĥR
J − h)(Xi)

+ 1
n

∑
i

(
Yi − h(Xi)

)
bK(Wi)′(Â′Â−A′A

)
bK(Wi)

(
ĥR
J − h)(Xi) := T11�J + T12�J �

Consider T11�J . We first observe by the Cauchy–Schwarz inequality that

T11�J ≤
(

1
n

∑
i

(
Yi − h(Xi)

)2∥∥AbK(Wi)
∥∥2
)1/2(1

n

∑
i

∥∥AbK(Wi)
(
ĥR
J − h)(Xi)

∥∥2
)1/2

�

Further, another application of the Cauchy–Schwarz inequality implies

Eh max
J∈In

∥∥(Y − h(X)
)
AbK(W )

∥∥2 ≤ max
J∈In

√
J
∥∥AEh

[(
Y − h(X)

)2
bK(W )bK(W )′]A′∥∥

F

= max
J∈In

{
√
JVJ}�
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2062 C. BREUNIG AND X. CHEN

using the definition of the normalization term VJ . Consequently, we evaluate

max
J∈In

T11�J

VJ
√

log logJ
� max

J∈In

ζJ
∥∥ĥR

J − h∥∥
L2(X)√

log logJ
× max

J∈In

√
Eh

[∥∥(Y − h(X)
)
AbK(W )

∥∥2]
ζJsJVJ

wpa1 uniformly for h ∈H0, where the right-hand side tends to zero by the rate condition
imposed in Assumption 5(i), that is, Ph(maxJ∈In ‖ĥR

J − h‖L2(X)ζJ/(log logJ)1/4 > ε) → 0
uniformly for h ∈ H0 for any ε > 0. Similarly, maxJ∈In T12�J/(VJ

√
log logJ) vanishes wpa1

uniformly for h ∈H0, using that

P
(

max
J∈In

{
s2
Jζ

−1
J

√
n/(logJ)

∥∥(Â−A)G1/2
b

∥∥}>C)
= P

(
max
J∈In

{
s2
Jζ

−1
J

√
n

logJ

∥∥(Ĝ−1/2
b ŜĜ−1/2

)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b SG−1/2

)−
l

∥∥}>C)
= o(1)�

by Lemma E.5(i). Consider T2�J . We have

T2�J ≤
∥∥∥∥ 1√

n

∑
i

(
Yi − h(Xi)

)
AbK(Wi)

∥∥∥∥+
∥∥∥∥ 1√

n

∑
i

(
Yi − h(Xi)

)
(Â−A)bK(Wi)

∥∥∥∥
:= T21�J + T22�J �

We have Eh maxJ∈In T21�J ≤√
Eh maxJ∈In ‖(Y − h(X))AbK(J) (W )‖2 ≤ maxJ∈In{J1/4

√
VJ} as

derived above and conclude

Eh max
J∈In

T21�J(
VJ

√
J(log logJ)

)1/2
� max

J∈In
J1/4

√
VJ(

VJ

√
J(log logJ)

)1/2
= o(1)

uniformly for h ∈ H0. Concerning the second summand T22�J , by another application of
Lemma E.5, maxJ∈In T22�J/(VJ

√
J(log logJ)) vanishes wpa1 uniformly for h ∈H0.

Step 2: We control the type II error of the test statistic T̃n. Let J∗ be as in the proof of
Theorem 4.1. We evaluate for all h ∈H1(δ◦rn) that

Ph (̃Tn = 0) = Ph
(
nD̂J ≤ η′′(α)VJ for all J ∈ In

)≤ Ph(nD̂J∗ ≤ c1

√
log logn− logαVJ∗)�

with c1 = 4(1 + c0), by the definition of η′′(α). Let ÛJ
i := (Yi − ĥR

J (Xi))AbK(Wi); then∥∥Eh

[
ÛJ∗]∥∥2 = Eh

[(
Y − ĥR

J∗ (X)
)
bK

∗
(W )′]A′AEh

[(
Y − ĥR

J∗ (X)
)
bK

∗
(W )

]
= ∥∥QJ∗

(
h− ĥR

J∗
)∥∥2

L2(X)
�

The triangular inequality implies |‖QJ∗ (h− ĥR
J∗)‖L2(X) −‖h− ĥR

J∗‖L2(X)|≤ supφ∈H ‖QJ∗φ−
φ‖L2(X) uniformly for h ∈ H1(δ◦rn). Consequently, Lemma B.1(ii) together with the def-
inition of J∗ implies suph∈H1(δ◦rn) (‖Eh[ÛJ∗]‖ − ‖h− ĥR

J∗‖L2(X))2 ≤ CBr2
n for some constant
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ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2063

CB > 0. Using this bound, we derive

Ph(nD̂J∗ ≤ 2c1

√
log lognVJ∗)

= Ph

(∥∥Eh

[
ÛJ∗]∥∥2 − D̂J∗ >

∥∥Eh

[
ÛJ∗]∥∥2 − 2c1

√
log lognVJ∗

n

)
≤ T1 + T2�

T1 := Ph

(∣∣∣∣∣ 4
n(n− 1)

J∗∑
j=1

∑
i<i′

(
ÛijÛi′j − Eh[Û1j]2

)∣∣∣∣∣> ρh
)
�

T2 := Ph

(∣∣∣∣ 4
n(n− 1)

∑
i<i′

(
Yi − ĥR

J∗ (Xi)
)(
Yi′ − ĥR

J∗ (Xi′)
)
bK

∗
(Wi)′

× (
A′A− Â′Â

)
bK

∗
(Wi′)

∣∣∣∣> ρh)�
where ρh = ‖h−H0‖2

L2(X)/2 − 2c1n
−1
√

log lognVJ∗ −CBr2
n. To establish an upper bound of

T1, we make use of Lemma E.3 which yields

T1 � n−1s−2
J∗ ρ

−2
h C2

h

(‖h−H0‖2
L2(X) + (

J∗)−2p/dx)+ n−2s−4
J∗ J

∗ρ−2
h � (B.2)

First, consider the case where n−2s−4
J∗ J∗ρ−2

h dominates the right-hand side. For any h ∈
H1(δ◦rn), we have ‖h− H0‖L2(X) ≥ δ◦rn for some sufficiently large δ◦ > 0 and hence, we
obtain the lower bound ρh ≥ ((δ◦)2/2−C−CB)r2

n for some constant C > 0. Consequently,
we have T1 � n−2s−4

J∗ J∗(J∗)4p/dx = o(1). Second, consider the case where n−1s−2
J∗ ρ−2

h C2
h(‖h−

H0‖2
L2(X) + (J∗)−2p/dx) dominates. For any h ∈H1(δ◦rn), we have ‖h−H0‖2

L2(X) ≥ (δ◦)2r2
n ≥

5c1n
−1VJ∗

√
log logn and we obtain the lower bound ρh ≥ (1/5 − CB/(δ◦)2)‖h−H0‖2

L2(X) .
Hence, (B.2) yields uniformly for h ∈H1(δ◦rn) that

T1 � n−1s−2
J∗ C2

h

(‖h−H0‖−2
L2(X) + ‖h−H0‖−4

L2(X)

(
J∗)−2p/d)� n−1s−2

J∗
√
J∗r−2

n = o(1)

using that suph∈H1(δ◦rn) C2
h �

√
J∗ by Assumption 5(ii). Finally, T2 = o(1) uniformly for

h ∈H1(δ◦rn) by making use of Lemma E.4.
Step 3: Finally, we account for estimation of the normalization factor VJ and for estima-

tion of the upper bound of the RES index set În. Lemma B.8(i) implies suph∈H0
Ph(Ĵmax >

J) = o(1). We thus control the type I error of the test T̂n for testing composite hypotheses,
as follows. By the lower bound of Lemma B.5, we have

Ph (̂Tn = 1) ≤ Ph

(
max
J∈In

nD̂J

η′
J(α)VJ

> 1
)

+ Ph
(

max
J∈In

|V̂J/VJ − 1|> c0

)
+ o(1) ≤ α+ o(1)

uniformly for h ∈ H0, where the last inequality is due to Step 1 of this proof and
Lemma B.4(ii). To bound the type II error of the test T̂n, recall the definition of J∗ ∈ In
introduced in Step 2 and note that suph∈H Ph(J∗ > Ĵmax) = o(1) by Lemma B.8(ii). Con-
sequently, the upper bound of Lemma B.5 and another application of Lemma B.8(ii)
give uniformly for h ∈ H1(δ◦rn): Ph (̂Tn = 0) ≤ Ph(nD̂J∗ ≤ η′′(α)VJ∗) + Ph(|V̂J∗/VJ∗ − 1|>
c0) + o(1) = o(1), where the last equation is due to Step 2 and Lemma B.4(i). Q.E.D.
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2064 C. BREUNIG AND X. CHEN

LEMMA B.9: Let Assumptions 1(i)–(iii), 2(i), 4, and 5(i) be satisfied. Recall the notation
h∗
J = arg minφ∈H0�J

‖∑i(φ− h)(Xi)ÂbK(Wi)‖. Then, for all ε > 0, we have

sup
h∈H0

Ph

(
max
J∈In

∥∥∥∥(nVJ√(log logJ)/J
)−1/2 ∑

i

(
h− h∗

J

)
(Xi)ÂbK(Wi)

∥∥∥∥> ε)= o(1)�

PROOF OF LEMMA B.9. The result is immediate under parametric null hypotheses. We
now consider the nonparametric case, where the semiparametric situation follows analo-
gously. Define �̃Bh := arg minφ∈B ‖∑i(φ − h)(Xi)ÂbK(Wi)‖ for any closed, convex set
B ⊂ H and �J�h := {φ : φ = κ1Q1h + · · · + κJQJh where

∑J

j=1|κj| ≤ 1} ⊂ �J for any
h ∈ H. We have 0 ∈�J�h; in particular, the zero function belongs to the interior of �J�h.
Thus, 0 ∈ H0 implies that the zero function belongs to the interior of �J�h − H0. Now,
using that H0 and �J�h are closed and convex subsets of H, we may apply Bauschke and
Borwein (1993, Corollary 4.5(i)): there exist hJ ∈�J�h ∩H0 �= ∅ and 0< c < 1 such that

sup
h∈H0

Ph

(
max
J∈In

{∥∥∥∥n−1
∑
i

(
hJ − (�̃�J�h�̃H0 )mh

)
(Xi)ÂbK(Wi)

∥∥∥∥� cm
})

= 1 − o(1) (B.3)

for all m ≥ 1. Here, we used also that �J�h ⊂�J′�h whenever J < J ′. The definition of h∗
J

implies∥∥∥∥∑
i

(
h− h∗

J

)
(Xi)ÂbK(Wi)

∥∥∥∥≤
∥∥∥∥∑

i

(h− hJ)(Xi)ÂbK(Wi)
∥∥∥∥

≤
∥∥∥∥∑

i

(
h− (�̃�J�h�̃H0 )mh

)
(Xi)ÂbK(Wi)

∥∥∥∥
+
∥∥∥∥∑

i

(
(�̃�J�h�̃H0 )mh− hJ

)
(Xi)ÂbK(Wi)

∥∥∥∥�
We make use of the decomposition h − (�̃�J�h�̃H0)mh = (id + �̃�J�h�̃H0 + · · · +
(�̃�J�h�̃H0 )m−1)(h − �̃�J�h�̃H0h). We may assume that h ∈ H0 does not belong to �J�h

and thus, �̃�J�h�̃H0 forms a contraction satisfying∥∥∥∥∑
i

(
h− (�̃�J�h�̃H0)mh

)
(Xi)ÂbK(Wi)

∥∥∥∥≤
∥∥∥∥∑

i

(h− �̃�J�hh)(Xi)ÂbK(Wi)
∥∥∥∥�

Choosing m = �logc(J
−1/2

√
VJ/n)�, we have m ≥ 1 for n sufficiently large by the upper

bound on VJ established in Lemma B.2, Assumption 4(ii), and using that 0< c < 1. Plug-
ging this choice of m in equation (B.3) thus implies∥∥∥∥(nVJ√(log logJ)/J

)−1/2 ∑
i

(
h− h∗

J

)
(Xi)ÂbK(Wi)

∥∥∥∥
�
∥∥∥∥(nVJ√(log logJ)/J

)−1/2 ∑
i

(h−QJh)(Xi)ÂbK(Wi)
∥∥∥∥+ J−1/2

 14680262, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
18602 by U

niversitaT
s- U

nd, W
iley O

nline L
ibrary on [30/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADAPTIVE HYPOTHESIS TESTING IN NONPARAMETRIC IV MODELS 2065

with probability approaching 1, uniformly for h ∈H0, using thatQJh ∈�J�h. It is sufficient
to consider the first summand on the right-hand side since maxJ∈In J−1/2 = J−1/2 = o(1).
First, we consider the off-diagonal summands:

√
J

n

∑
i �=i′

(h−QJh)(Xi)(h−QJh)(Xi′)bK(Wi)′A′AbK(Wi′)

+
√
J

n

∑
i �=i′

(h−QJh)(Xi)(h−QJh)(Xi′)bK(Wi)′(Â′Â−A′A
)
bK(Wi′)

=: T31�J + T32�J �

Consider T31�J . By the definition of QJh(·) = ψ̃J(·)′AE[bK(W )h(X)], we observe

E
[
(h−QJh)(X)AbK(W )

]= E
[
QJ(h−QJh)(X)ψ̃J(X)

]= 0�

Further, we infer for all J ∈ In that
√

E[(QJh− h)2(X)|W ] � ‖QJh − h‖L2(X) � J−p/dx

wpa1 uniformly for h ∈ H0 by Lemma B.1(ii) and thus, E|
√
JE[(QJh − h)2(X)|W ]| =

o(1) by Assumption 4(iii). Further, we obtain for all J ∈ In and uniformly for h ∈H0:

E
[(
QJ(h−�Jh)

)4
(X)

]
� ζ2

J

∥∥(G−1/2
b SG−1/2

)−
�

E
[
(h−�Jh)(X)b̃K(W )

]∥∥4 � ζ2
J J

−4p/dx

and JE[(QJ(h−�Jh))4(X)] = o(1) by Assumption 4(iii). Using these moment bounds,
we may follow Step 1 of the proof of Theorem 4.1 by replacing Yi − h(Xi) with
J1/4(QJh− h)(Xi) for h ∈ H0 and for any ε > 0 obtain Ph(maxJ∈In T31�J/(VJ

√
log logJ) >

ε) = o(1) uniformly for h ∈ H0. Consider T32�J . For any ε > 0, we have Ph(maxJ∈In T32�J/

(VJ
√

log logJ) > ε) = o(1) uniformly for h ∈H0, following Lemma E.6 again by replacing
Yi − h(Xi) with J1/4(QJh− h)(Xi) for h ∈H0.

Finally, we control the diagonal elements of J1/4‖n−1/2
∑

i(h−QJh)(Xi)ÂbK(Wi)‖. To
do so, we make use of the decomposition

√
J

n

∑
i

∥∥(h−QJh)(Xi)AbK(Wi)
∥∥2 +

√
J

n

∑
i

∥∥(h−QJh)(Xi)(Â−A)bK(Wi)
∥∥2

=: T41�J + T42�J �

Using Lemma E.5(i), for any ε > 0 we obtain Ph(maxJ∈In T42�J/(VJ
√

log logJ) > ε) = o(1)
uniformly for h ∈H0 and thus it is sufficient to consider T41�J . We have

max
J∈In

T41�J

VJ
√

log logJ
� max

J∈In

√
J
(‖h−QJh‖L2(X)ζJs

−1
J

)2

VJ
√

log logJ

wpa1 uniformly for h ∈H0. The right-hand side tends to zero using that ‖h−QJh‖L2(X) =
O(J−p/dx) and Assumption 4(iii) together with s−2

J ≤ σ−2VJ (by Lemma B.3). Q.E.D.
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