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Abstract

This paper studies semiparametric Bayesian inference for the average treatment
effect on the treated (ATT) within the difference-in-differences (DiD) research design.
We propose two new Bayesian methods with frequentist validity. The first one places
a standard Gaussian process prior on the conditional mean function of the control
group. The second method is a double robust Bayesian procedure that adjusts the
prior distribution of the conditional mean function and subsequently corrects the
posterior distribution of the resulting ATT. We prove new semiparametric Bernstein-
von Mises (BvM) theorems for both proposals. Monte Carlo simulations and an
empirical application demonstrate that the proposed Bayesian DiD methods exhibit
strong finite-sample performance compared to existing frequentist methods. We also
present extensions of the canonical DiD approach, incorporating both the staggered

design and the repeated cross-sectional design.
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1 Introduction

The Difference-in-Differences (DiD) method is widely used in causal inference. It is
particularly effective for evaluating policy interventions while accounting for unobserved
time-invariant heterogeneity. The primary parameter of interest in this context is the
average treatment effect on the treated (ATT). One of its key identifying conditions is
the (conditional) parallel trends assumption, i.e., treated and control groups would exhibit
similar trends absent treatment after adjusting for covariates (Abadie, 2005; |Sant’Anna
and Zhao, 2020)). While the related literature is largely frequentist, this paper introduces
a Bayesian framework under conditional parallel trends, avoiding parametric assumptions
on model primitives. Our approach yields point estimates and credible sets in a unified
manner.

We propose two novel Bayesian methods for inference on the ATT in the DiD framework.
First, we propose the Bayesian procedure using Gaussian process priors. This method
places the Gaussian process prior on the conditional mean function for the control group
and a Dirichlet process prior on the remaining part of the distribution in the likelihood.
This avoids the need to impose Bayesian modeling on either the conditional mean of
the treated group or the propensity score. Our method can be viewed as the Bayesian
counterpart of Heckman, Ichimura, and Todd (1997)), with the added advantage of enabling
automatic uncertainty quantification through the posterior distribution. We show that
this Bayesian method satisfies the Bernstein-von Mises (BvM) theorem under regularity
conditions and is therefore asymptotically equivalent to semiparametric efficient frequentist
estimators. While its asymptotic BvM property does not hold under double robust
smoothness conditions, the Bayesian method performs well empirically when the number of
continuous covariates is moderate and in scenarios where the overlap assumption is nearly
violated. This robustness stems, in part, from the Gaussian process prior being specified
solely on the conditional mean function for the control group.

We also provide an extension of our Bayesian procedure, which incorporates
robustification via estimated propensity scores and is particularly suited for more complex
models, either due to a larger number of continuous covariates or when the underlying
conditional mean functions are not smooth. Our Double Robust Bayesian procedure adjusts
the prior and posterior distributions by incorporating an efficient influence function. By
doing so, we leverage the rich frequentist literature on double-robust estimation, specifically
Sant’Anna and Zhao| (2020) in the DiD framework, without sacrificing many of the
desirable properties of the Bayesian approach. Under double-robust smoothness conditions,

our robust Bayesian procedure satisfies the semiparametric Bernstein—von Mises (BvM)
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theorem, albeit with a “bias term” in the posterior. Specifically, the resulting posterior
distribution depends on the unknown true conditional mean and propensity score functions.
Our double-robust Bayesian approach addresses this “bias term” by incorporating an
explicit posterior correction. Both the prior adjustment and the posterior correction are
derived from functional forms closely associated with the efficient influence function of
estimating the ATT.

In our Monte Carlo simulations, we find that our methods result in improved empirical
coverage probabilities while maintaining competitive confidence interval lengths compared
to existing frequentist methods. This finite sample advantage is also observed in low
dimensional cases for our Bayesian method that does not involve prior or posterior
corrections[| This can be explained by the construction of the Bayesian procedure for
the ATT, which involves only a prior specification for the conditional mean function
in the control arm. In particular, we note that our approach leads to more accurate
uncertainty quantification and is less sensitive to estimated propensity scores that are close
to boundary values. Our Bayesian methodology requires a prior specification through
a likelihood function for the control arm, for which we impose an exponential family
structure. In the Gaussian case, for instance, this leads to a computationally efficient
procedure with the posterior being multivariate Gaussian, which avoids computational
demanding methods like MCMC. We stress that the misspecification of this structure
does not have serious consequences for estimation of the ATT. First, as shown in (Kleijn
and van der Vaart| 2006, Section 4), nonparametric Bayesian methods possess the same
robustness to misspecification as the frequentist M-estimation using least squares. Second,
we provide finite sample evidence through simulations, where we find that our Bayesian

procedures are not sensitive to misspecifications of the likelihood functions.

In the related literature, nonparametric Bayesian causal inference has recently received
considerable interest; see, for example, the numerous applications in Daniels, Linero,
and Roy| (2024). Ray and van der Vaart (2020)) develop the comprehensive theory for
establishing the BvM theorem in the missing data framework, employing Gaussian process
priors for the conditional mean function. Extending their methodology to the ATT would
require nonparametric Bayesian modeling of both the propensity score and the conditional
mean function for the treated group, as discussed in Remark [3.I] A key innovation

of our proposal is to circumvent this route by building our Bayesian procedure on a

'In contrast, a Bayesian method without prior correction performs poorly for the average treatment
effect (ATE) as shown by Breunig, Liu, and Yu| (2025a)).



reparametrization that is particularly convenient for the analysis of the ATT.

Ray and van der Vaart| (2020) also propose the novel prior adjustment to the conditional
mean, which makes use of the estimated propensity score. Building on this prior
adjustment, Breunig, Liu, and Yu| (2025a)) introduce a debiasing step to further correct
the posterior and establish the BvM theorem for the average treatment effect (ATE) under
double robustness. Although they outline the extension to general semiparametric models
where the parameter of interest can be written as the linear functional of conditional
means, this approach does not cover the case of the ATT, because of its ratio form. To
address the random denominator that estimates the proportion of treated individuals, we
apply a new conditional Slutsky lemma introduced by Yiu, Fong, Holmes, and Rousseau
(2023) in the Bayesian context. Also, the correction steps in our Bayesian method share
the same motivation as in Breunig, Liu, and Yu (2025a), but differ in their functional
form. This is in line with the well known subtle differences between the cases for ATE and
ATT; see Hahn| (1998)). Additionally, we find that the bias term in the BvM for ATT is
substantially simpler than that for ATE, which also explains the favorable finite-sample
behavior of Bayesian ATT estimators even without posterior corrections. In contrast,
Yiu, Fong, Holmes, and Rousseau| (2023) suggest a different type of posterior correction
that assumes stronger regularity conditions in the context of the ATT. To the best of our
knowledge, our proposed double robust BvM theorem for the ATT is the first to relax the
Donsker property assumption for the conditional mean (see also Remark for a detailed
comparison).

Our paper is also connected to the broader literature on robustifying standard Bayesian
procedures in econometrics. Regarding Bayesian inference methods for partially or weakly
identified models, we refer readers to |[Chen, Christensen, and Tamer| (2018); |Giacomini
and Kitagawa| (2021)); Andrews and Mikusheva (2022). Under local misspecification of
parametric models, Miiller and Norets| (2024)) establish a novel BvM result utilizing the
efficient influence function. There are also scattered results exploring Bayesian methodology
to the study of ATT or DiD. In an earlier paper, (Chib and Hamilton| (2002)) developed
a semiparametric Bayesian model for the ATT in both cross-sectional and panel data
settings. Their semiparametric model differs from our setup in that covariates enter the
outcome equation linearly, while the error term is modeled using flexible Dirichlet process
mixtures. Recently, in the context of assessing sensitivity to the parallel trends assumption,

Kwon and Roth| (2024)) proposed a Bayesian approach.

The remainder of this paper is organized as follows. Section [2] presents the setup and



introduces the Bayesian framework in the DiD setup. Section [3| outlines our Bayesian
methods. In Section [4] we establish inference via semiparametric BvM theorems for our
first method. In Section [5 we derive a doubly robust, semiparametric BvM theorem
for our second method. Section [0] provides BvM results under primitive conditions when
using squared expontential process priors. Section [7] presents finite sample results via
simulations and an empirical illustration. Towards the end, we outline two extensions
of our methodology: Section |8 provides an extension to the staggered intervention with
multiple time periods and repeated cross-sectional data. Proofs of main theoretical results
are collected in Appendix [A] Supplementary Appendices provide additional technical

results and further simulation evidence.

2 Setup and Implementation

This section provides the main setup of the average treatment effect on the treated
(ATT) in the difference-in-differences (DiD) design. We first provide standard conditions
for the identification of the ATT and introduce additional notations under the Bayesian

formulation of the problem.

2.1 Setup

We focus on the canonical DiD design case, where there are two treatment periods and
two treatment groups. Let Y;; be the outcome of interest for unit ¢ at time t. We assume
that researchers have access to outcome data in a pre-treatment period ¢ = 1 and in a
post-treatment period ¢t = 2. Let D;; = 1 if unit 7 is treated before time ¢ and D;; = 0
otherwise. Note that D;; = 0 for every ¢ and thus we may write D; = D;5. Using the
potential outcome notation, Y;;(0) or Y;;(1) denotes the outcome of unit i at time ¢ if it
does not receive or receives treatment by time ¢, respectively. Thus, the realized outcome
for unit i at time ¢t = 1is Y;; = ¥;1(0), and at time ¢ = 21itis Vo = D;Yio(1)+(1 — D;) Yi2(0).
Below, P, denotes the frequentist distribution generating the observed data.

A vector of p-dimensional pre-treatment covariates X; is also available, with cumulative
distribution function denoted by FxP| Let mo(z) = Py(D; = 1 | X; = x) denote the
propensity score, myp = Py(D; = 1) the proportion, and mg(z) = E¢[AY; | D; = 0, X; = ]
the conditional mean of the differenced outcome across two periods, where AY; := Y;y — Yj;

and where Eq|[-] denotes the expectation under P,. The researcher observes an independent

2If X; does not have a density we can simply consider the conditional density of (AY;, D;) given X; = x
instead of the joint density of (AY;, D;, X;).



and identically distributed (i.i.d.) observations of (Yii, Y, Ds, X)), i = 1,...,n. In
addition to this canonical panel data setup, we discuss how our results translate to
repeated cross-sections data in Section [8.2, while an extension to staggered intervention
is provided in Section In addition to this canonical panel data setup, we provide an
extension to staggered interventions in Section [8.1] and discuss how our results translate to
repeated cross-sectional data in Section [8.2] For notational simplicity, we will henceforth

suppress the unit index .

Regarding the causal effect in the canonical DiD setup, the related literature primarily

focuses on the average treatment effect on the treated (ATT) given by
7 = B[V (1) = Y2(0)|D = 1].

For its identification, we impose the no anticipation assumption, conditional parallel trends

(PTA) given covariates X, and the weak overlap conditions as follows.

Assumption 1. For all x in the support of F'x we have:

(i) Eg[Y1(0) | D=1, X =2] =E¢[Yi(1) | D=1, X = z] (No Anticipation),
(i) Eo [¥2(0) = Vi(0) | D = 1,X = 2] = By [¥2(0) — ¥(0) | D = 0, X = ] (PTA),
(iii) P(D=1)>cand Pp(D=1| X =x) <1—¢ for somee >0 (Overlap).

Under Assumption [l the ATT is identified by

o [D (AY — mo(X))]

To = Eo [AY —mo(X) | D =1] = Eo[D]

(2.1)

One can construct an estimator that replaces the conditional mean function mgy with
an estimator, known as the outcome regression approach, as described in Heckman,
Ichimura, and Todd| (1997). As noted by (Abadie, 2005, p.6), plug-in estimators based on
standard nonparametric estimators of the conditional mean function mg can face significant
challenges due to the curse of dimensionality. This is where we can capitalize the strength
of Bayesian estimation, which allows us to incorporate rich covariate information in the
prior distribution. It has also been noted in the recent literature that, in the presence of
heterogeneous treatment effects in X, i.e., when Eq[Y5(1) — Y5(0) | X = 2, D = 1] varies
with z, the two-way fixed effect estimator (TWFE) is in general not consistent for the ATT.

See also Remark 1 of Sant’Anna and Zhao| (2020) for an explicit discussion.



2.2 A Bayesian Framework

We now provide the formal Bayesian setup to the ATT in the DiD context. We consider
a family of probability distributions {P, : n € H} for some parameter space H. The
(possibly infinite dimensional) parameter 1 characterizes the probability model. Let 1y be
the true value of the parameter and denote Py = P,, which corresponds to the frequentist
distribution generating the observed data. Under P, where n = (7, fx, fay|p,x), the joint
density function of Z = (AY, D, X")" can thus be written as

gy, d.x) = fx(@)m(2)(1 = (@) " faypx(y | Lo) fayipx (v ] 0.2),  (2.2)

(& J
"

::f(:%d’z)

where fay|px(y | d,x) for d = 1 is the unrestricted conditional density of AY" given
(D, X), while for d = 0, we impose the exponential family condition as in . Here, f
denotes the joint density of (DAY, D, X7")" under P,, and the corresponding cumulative
distribution function is denoted by F. Importantly, specifying only the prior distribution
on density function f and the conditional mean function m is sufficient for identifying the
ATT parameter of interest. Specifically, there is no need to additionally parameterize the
propensity score 7, the marginal density of X, or the conditional density for the control
group, fayip,x(y | 0,2), which is a deterministic function of m(z) due to the exponential
family assumption imposed in below.

We consider the following reparametrization of (m, f) given by n = (n™,n/). A central
insight of this paper is to show that a nonparametric process prior specification on the
conditional mean function m and the density f is sufficient for the Bayesian inference on
the ATT parameter. We index the probability model by F,, where

m, =q '(n™) and f, = exp(n’)

for some known, invertible function ¢(-), which we specify below. We can write the ATT

depending on a hyperparameter n as

o ]EU[DAY — Dmn(X)]
K E,[D] ’

(2.3)

where [E, denotes the expectation under P, and in this case, is the integral with respect to
the density f,.
As we saw above, we only need to impute the conditional mean of the outcome in the

control group, making it unnecessary to impose a model for the treated group. We assume



that the distribution of AY', conditional on D = 0 and X, belongs to the “single-parameter”
exponential family, where the unknown parameter is the nonparametric conditional mean
function m(z) = E[AY | D = 0,X = x]. Specifically, we assume that the conditional

density function is given by

favip.x(y 1 0,2) = c(y) exp [q(m(x))ay — A(m(z))], (2:4)

where A(m) = log{c(y) exp [¢(m)ay] dy, some constant ¢ > 0, and the function ¢(-)
links the conditional mean to the “natural parameter” of the exponential family. We
also restrict the sufficient statistic to be linear in y. The exponential family assumption
implies the conditional mean equation E[AY | D = 0,X = x| = A'(m(z))/(aq (m(x))),
which corresponds to generalized regression models. Interestingly, in the exponential family
examples provided below, the previous equation implies E[AY | D = 0, X = z] = m(z) and
hence the exponential family assumption does not impose functional form assumptions
on the conditional mean function m in these cases and, in particular, does not restrict the
ATT parameter.

The family allows for counting and continuous outcomes. For instance, when
a = 1, the Poisson distribution corresponds to the choices c¢(y) = 1/(y!), g¢(m) = logm, and
A(m) = m, while the exponential distribution is represented by c(y) = 1, ¢(m) = —1/m,
and A(m) = logm. Furthermore, the normal distribution with Var(AY|D = 0, X) = o2 for
some o > 0, is captured by ¢(y) = exp(—y2/(202)) /2102, ¢(m) = m/o, A(m) = m?/(20?),
and a = 1/0. For the normal case, we treat o as a hyperparameter and estimate it together
with hyperparameters in Gaussian process prior by maximizing marginal likelihood. We
note that while a generalization to multinomial outcomes, as in |Breunig, Liu, and Yu
(2025a)), is possible, we do not consider this case explicitly in this paper.

A high-level assumption in our BvM theorem requires the posterior contraction of m,, to
the true conditional mean my. There are cases that this holds even if the exponential family
is misspecified. Generally, the posterior of m, will contract on near the point (pseudo-true
value) in the support of the prior that minimize the Kullback—Leibler (KL) divergence with
respect to the true data generating probability. Related posterior contraction results and
cases where the pseudo-truth concides with mg can be found in |Kleijn and van der Vaart
(2006). This aligns with our finite sample results, which are not sensitive to deviations
from exponential family distributions, as shown in Appendix [E] Beyond the exponential
family, one can also consider the flexiable nonparametric Bayesian approach in Norets and

Pelenis| (2022) to model the conditional distribution of the outcome for the control group.



Remark 2.1 (ATT in Cross-Sectional Setting). The results of our paper contribute to the
literature of ATT wusing cross-sectional data, i.e., where an i.i.d. sample of (Y;, D;, X;1)T
for i = 1,...,n is available. In this case, a specific example captured by the single-
parameter exponential family is when the outcome variable is binary, where q(m) =
log(m/(1 —m)), A(m) = —log(l — m), and ¢(y) = a = 1. This binary outcome case
does not require any distributional assumptions. Interestingly, the sample ATT, given by
o D) Y Di(mo(1, X;) — mo(0, X)), requires only a prior on the conditional mean
functions, without the need for to specify a Dirichlet process prior. On the other hand, a
prior for the conditional mean function of the treatment group is also necessary in this case.

We do not address a Bayesian approach for the sample ATT in this paper.

3 Bayesian Point Estimators and Credible Sets

We now present two Bayesian procedures that build on flexible prior processes, enabling
semiparametric inference on the parameter of interest. The first corresponds to a
nonparametric Bayesian approach based on standard Gaussian process priors. The second
involves Bayesian methods with frequentist modifications, incorporating an adjustment to

the prior along with a posterior correction.

3.1 Semiparametric Bayesian Inference

We first consider nonparametric Bayesian inference, which builds on a standard Gaussian
process prior for the conditional mean function combined with an independent Dirichlet
process prior for the conditional expectation in . The proposed method does not
include a propensity score adjustment, which prevents it from achieving double robustness,
as we see in the next section. In our simulation results, however, we find that the proposed
method is robust even in cases of near overlap failure.

The use of Gaussian process priors for the conditional mean has the following
motivation. The mode of a posterior stemming from Gaussian process priors can be
derived by a minimization problem involving the corresponding norm of a so-called
reproducing kernel Hilbert space (RKHS). Gaussian process (GP) priors share close ties
with spline estimation (Wahbay 1990), a connection that—along with their strong finite-
sample performance—has fueled their popularity in machine learning (Rassmusen and
Williams|, [2006; [Murphy, [2023). For other notable applications in econometrics, see Kasy
(2018), |Chib, Shin, and Simoni (2018) and Florens and Simoni (2021)).



The Dirichlet process is default prior on spaces of probability measures. By the
definition of the ATT 7,, we assign a Dirichlet process prior to model the distribution
F,, which induces the so-called Bayesian bootstrap when the base measure of the Dirichlet

process is taken to be zero; see (Rubin, |1981]) and also (Chamberlain and Imbens) (2003]).

Algorithm 1 Bayesian Procedure using Standard Gaussian Process Priors
Input: Data Z; = (AY;, D;, X;)T for 1 <i < n and number of posterior draws B.

Prior Specification: Select a Gaussian process prior W™ and set the prior for

my(a) = (" (@) and () = W), (3.1)

Posterior Computation:

fors=1,...,B do
(a) Generate the s-th draw of the posterior of (m,(X;))i,; using the Gaussian process
prior and the data from the control arm; denote it as (m; (X;))i- -
(b) Draw Bayesian bootstrap weights My, = ef/>7_, €5 where ef < Exp(l) 1<i<n.
(c) Calculate a posterior draw for the ATT:

5 i M, (AY m (X )) (3.2)

! Zizl

end for
Output: {7, :s=1,...,B}

The Bayesian Algorithm (1] allows for simultaneous point estimation and uncertainty
quantification. Our 100- (1 — «)% credible set C,(«) for the ATT parameter 7y is computed
by

Cole) = {7 :q(a/2) < 7 < q(1 — /2)}, (3.3)

where g(a) denotes the a quantile of {7, : s = 1,..., B}. We also obtain the Bayesian point
estimator (the posterior mean) by averaging the simulation draws: 7, = B~ ZS 1 Ty

For the choice of the prior process W™, we use a Gaussian process with mean p and
the squared exponential (SE) covariance function K (-,-) (Rassmusen and Williams|, 2006,

p.83) given by
K (x,2'):=v exp( Zaln — 1)) /2) (3.4)

2

where the hyperparameter »“ is the kernel variance and ai,,...,a,, are rescaling
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parameters that reflect the relevance of each covariate in predicting n™. In practice,
the hyperparameters p, v, and ai,,...,a,, can be chosen by maximizing the marginal
likelihood. When the exponential family specification in takes the Gaussian form, Step
(a) of posterior computation in Algorithm [1]is analytically tractable and computationally
very efficient, see Supplementary Appendix D] for details. For non-Gaussian cases, one can

use Laplace approximation or Monte Carlo sampling for Step (a).

3.2 A Double Robust Version

Our Bayesian approach relies on prior correction via inverse propensity score weighting
(IPW) in the least favorable direction, as specified by the efficient influence function. In
contrast to |Abadie| (2005)), we do not incorporate IPW directly. Importantly, we make use
of IPW for the prior and posterior correction of our Bayesian procedure. This resembles
Sant’Anna and Zhao| (2020) who combine OR and IPW to achieve doubly robust estimation
in the frequentist setting. Following [Hahn| (1998); |[Hirano, Imbens, and Ridder (2003)) or,
in the DiD setup Sant’Anna and Zhao (2020)), the efficient influence function for the ATT

is given by

~ D
T,(AY, D, X) = v,(D, X)(AY —m, (X)) — — T, (3.5)
"
with its Riesz representer v, given by
d 1—d m(x
Yo(d,x) = — — n(7) : (3.6)

T T, 1—m(x)

We show in the Supplemental Appendix [B| that the Riesz representer v, determines the
least favorable direction associated with the Bayesian submodel with the largest variance.
Our prior adjustment using this Riesz representer provides exact invariance under shifts in
nonparametric components along this direction. This extends the work of Ray and van der
Vaart| (2020) on unconditional average treatment effects to the ATT case, where the least
favorable function, given by the efficient influence function, takes a different functional
form. In a similar vein to Breunig, Liu, and Yu (2025a)), we use the Riesz representer to
correct for posterior bias under double robust smoothness conditions.

Our prior and posterior adjustments depend on a preliminary estimator of vy. A pilot
estimator for the propensity score m(+) is denoted by 7(-), based on an auxiliary sample,
as is the estimator of the treated proportion my, which is taken to be the sample mean of

the treatment indicators. We also make use of a pilot estimator m for the conditional mean
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function my. We consider a plug-in estimator for the Riesz representer vy given by

1-d 7(z) _ d—7(z) . (3.7)

7 1-7@) (1-7)7

;)\/(da JI) =

M|

One could also consider an estimation proportion based on the sample information of
D; alone, yet this would complicate the theoretical analysis without improving the finite
sample performance of our procedure. The use of an auxiliary data for the estimation
of unknown functional parameters simplifies the technical analysis and is common in the
related Bayesian literature; see Ray and van der Vaart (2020)) for propensity score adjusted
priors in the case of missing data. In practice, we use the full data twice and do not split
the sample, as we have not observed any over-fitting or loss of coverage thereby.

Algorithm [2] describes our double robust Bayesian procedure that approximates the
posterior distribution of 7;, given in equation . Let n. denote the number of observations
in the control arm. Based on simulations, we recommend the following choices of the
pilot estimators. The initial estimator 7, given in , is implemented based on logistic
regression for the propensity scores 7(z) and the sample average of the treated proportion
7. The pilot estimator for m(z) is implemented by m(z) = Zf;lmf](x)/B, where m;
is obtained in Step (a) of the posterior computation in Algorithm (1, and B denotes the
number of posterior draws.

Algorithm 2| also leads to simultaneous point estimation and uncertainty quantification.
The 100 - (1 — @)% credible set C,(a)P® for the ATT parameter 79 is as in (3.3), but
here ¢(a ) denotes the a quantile of {7 : s = 1,..., B}. The Bayesian point estimator by

—DR 125 1 77

Remark 3.1 (Distinction with ATE). With cross-sectional i.i.d. data on (Y;, D;, X;),
Breunig, Liu, and Yu (2025d) study the Bayesian inference for the ATE. The posterior
of the ATE builds on §[m,(1,2) — m,(0,2)|dFx,,(x), where one assigns Gaussian process
priors on the conditional means (m,(1,-), m,(0,-)) and places a Dirichlet process prior on
Fx,(-). An adoption of their framework for our analysis of the ATT would lead to an

alternative Bayesian method based on

__ Sm(@)[my (1, 2) = my (0, 2)]d Fxy (z)
! §my(2)dFx () ’

which requires prior specification for each component of (my,(0,-), m,(1,-),m,(-), Fx,(:))-
Fortunately, this is not necessary. The key observation of our current approach is that the

last three components are all contained in F,(-). As a result, we do not need to specify them
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Algorithm 2 Double Robust Bayesian Procedure
Input: Data Z; = (AY;, Dy, X)) for i = 1,...,n, number of posterior draws B, initial
estimators 4 and m.
Prior Specification: Set the adjusted prior:

m,(x) = ¢ ' (n(x)), where n™(x) = W™ (x) + A5(0, x), (3.8)

where W™ is the Gaussian process in Algorithm [1] independent of A\ ~ N(0,¢?2), where
¢, = vlogne/(y/n.Ty), v is the hyperparameter in (3.4), and ', = > [7(0, X;)(1 —
Dy)l/ne.
Posterior Computation:
for s=1,...,B do
(a) Generate the s-th draw of the posterior of (m,(X;))’, using the adjusted prior in
(3-8) and the data from the control arm; denote it as (m;(X;))i,

(b) Draw Bayesian bootstrap weights M, = ef/ >, 7 where e ~ Exp(l) I1<i<n.
(c) Calculate the corrected posterior draw for the ATT:

o= s = b3, (3.9)

n

where 7,7 is given in (3.2)) but using the propensity score adjusted prior from (3.8) and

the posterior correction 6;37 is given by

3I*—‘

i&axr —m?)(X). (3.10)

end for
Output: {7} :s=1,...,B}

13



separately when analyzing the ATT.

Remark 3.2 (Posterior Recentering). A posterior debiasing step for the posterior is
required by Theorem and, as shown in Theorem our posterior correction term
mn indeed allows for a deriwation of the BuM result under double robust smoothness
assumptions. On the other hand, the posterior correction is not required if one is willing
to impose Donsker type smoothness conditions on the conditional mean function m,, i.e.,
if the smoothness of m,, exceeds dim(X;)/2, which is an implication of Corollary .
Posterior corrections were also proposed by |Breunig, Liu, and Yu (20254d) in the context
of average treatment effects (ATEs) using cross-sectional data. In their case, the bias
correction term is given by E;;WE’S =n 130 T [ms —m] (Z:), where T[m](z) := m(1,z)—
m(0,z) +54TE(d, z)(y — m(d, x)) is an estimator of the efficient influence function for the
ATE. See also Remark [5.1] for the a more explicit comparison of the biases in both cases.

We observe that double-robust Bayesian inference for the ATT, as given in (3.10)), involves

a simpler form of posterior correction compared to that for the ATE.

Remark 3.3 (Comparison with Frequentist Estimators). Our approach is also inspired
by existing frequentist methods to conduct inference on the ATT. Heckman, Ichimura, and
Todd (1997) propose the following outcome imputed estimator for the ATT:
. S DAY - (X))
Z?:l D; ’

where m(+) stands for the kernel smoothing estimator of the conditional mean in the control

group. The double robust version from|Sant’Anna and Zhao (2020) is

n

~ Ioa ~
RO = & 38 (D0 X (A (X)),

for some pilot estimators of the propensity score and the conditional mean of the control
group. In contrast, our Bayesian estimator does mot directly shift the parameter via
the estimated Riesz representer %; rather, it enters indirectly via prior and posterior

adjustments.

4 Bayesian Inference with Gaussian Process Priors

In this section, we establish a Bernstein-von Mises Theorem using standard Gaussian

process priors as considered in our Bayesian procedure in Algorithm [T}
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4.1 High-level Assumptions

We now provide additional notations used for the derivation of our semiparametric
Bernstein-von Mises Theorem. Recall that we restrict the joint density for the control arm
only, imposing the exponential family restriction as in (2.4). We denote the observed data
corresponding to the treated part as Zérgat = (Xj, D;, D;AY;). We express the posterior as

follows:

SaIT% AY\DX(AY|OX)dH<)

L(F | 23,
SHH v b (AY: [0, X;) dII(m)

I(meAFeB|Z") =

where the conditional density fay|px is a function of the conditional mean m by the
exponential family restriction given in . Here, we used the fact that independent
priors are placed on the conditional mean m and the distribution function F'.

We first introduce assumptions, which are high-level, and discuss primitive conditions
for those in the next section. Below, we consider some measurable sets H!" of functions n™
is understood only for the control arm such that II(n™ € H™ | Z™) —p 1. To abuse the
notation for convenience, we also denote H,, = {n : ™ € H"'} when we index the conditional

=4 /{ ¢?(2)dFy(2)

< }. When we consider the conditional moment function

mean function m, by its subscript 7. We write the expression
for all ¢ € L2(Fy) := {¢ :
m below, the integral simplifies to one that depends only on the marginal distribution of
X under F,.

< &p.

Assumption 2 (Rates of Convergence). For some &, — 0, sup,cy, [my,

The posterior contraction rate for the conditional mean can be derived by modifying the
classical results of (Ghosal, Ghosh, and van der Vaart| (2000). In the related literature, the
requirement ¢, = o(n~4) is stated explicitly in order to eliminate second-order remainder
terms; see Condition (C) in |Castillo| (2012)). This also aligns with the usual cut-off rate
of the nonparametric components in frequentist semiparametric models (Newey, |1994)).
Note that the ATT 7, is linear in m,, so that we do not need to deal with these second-
order terms. Nevertheless, the posterior contraction rate also plays a crucial role in the
next two assumptions related to the stochastic equicontinuity and prior stability. For the
concrete example involving the Holder class for the conditional mean function, we need to
impose sufficient smoothness so that this contraction rate indeed satisfies y/ne? = o(1).
If the exponential family structure is misspecified, the posterior contracts to the
point in the support of the prior that is closest to the true distribution (as measured by

the Kullback-Leibler divergence). Specifically, if one starts with the Gaussian model, the
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contraction result required by Assumption [2| can be established utilizing Theorem 4.1 of
Kleijn and van der Vaart| (2006), provided that the true conditional mean lies within the
prior’s support.

We adopt the standard empirical process notation as follows. For a function h of a
random vector Z = (Y, D, XT)T" that follows distribution P, we let P[h] = {h(z)dP(z),
P.[h] =n~t " h(Z;), and G,[h] = y/n (P, — P) [h]. The next set of assumptions restrict
the complexity of the conditional mean functions. The first part requires the class {m,, : €
H,} to be Glivenko-Cantelli, plus some mild moment conditions on its envelope function.
The second part imposes the stochastic equicontinuity, which is holds when the conditional
mean function belong to a Donsker class. For the Hélder class considered in Section [0]
this enforces the sufficient smoothness of those functions relative to the dimensionality of

covariates.

Assumption 3 (Complexity). (i) sup,ey, |(Pn — FPo)my,| = op,(1) and {m, : n € H,}
has an envelope function M(-) with PyM?"% < oo for some constant § > 0 and (ii)

SUD e, |Gy, [, — mo]| = op,(1).

The next assumption concerns the prior stability condition, which is common to
semiparametric Bayesian inference (Ghosal and Van der Vaart| (2017). This facilitates the
technical proof for which we need to consider the perturbation along the least favorable
direction. For standard parametric models, the absolute continuity of the prior density
suffices. However, for nonparametric priors, the very notion of a Radon-Nikodym density
is non-trivial, and one needs to apply the Cameron-Martin theorem; see Proposition 1.20
in (Ghosal and Van der Vaart| (2017). For that purpose, we introduce some necessary
terminologies related to the general Gaussian process. Such a process determines a so-called
reproducing kernel Hilbert space (RKHS) (H™, | - |[gm ).

Our Bayesian method based on standard Gaussian process priors in Algorithm [I} does
not include a correction involving the Riesz representer 7, as defined in . Yet to
establish prior stability, an approximation condition for ~q is imposed, requiring sufficient
regularity of the propensity score mo(-). We introduce the ball in H™ centered at the true

Riesz representer 7y, given by
H™(r,) == {h e H™ : |h — | < ry and ||h|gm < v/nr,}

for some rate r,, where | - ||, denotes the supremum norm.

Assumption 4 (Prior Stability). There exists 7, € H™((,) for a sequence (, = o(1)
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with y/ne,(, = o(1) where €, is the posterior contraction rate in Assumption . Further,
(™ e H™ —t7,n V2| ZM™) —p 1 for every t € R.

Assumption [4] imposes an approximation condition to the Riesz representer 7, via the
restriction 7, € H™((,). Based on this assumption, we provide the proof of this prior
stability in Supplementary Appendix [C.3] In comparison, the prior correction weakens
the requirement with the help of a pilot estimator of the propensity score, pioneered by
Ray and van der Vaart| (2020). Under propensity score adjusted priors analyzed in the
next section, [Breunig, Liu, and Yul (2025a) the approximation condition even holds under

double robustness.

4.2 A BvM Theorem

We now establish a Bernstein-von Mises Theorem for our nonparametric Bayesian method
based on standard Gaussian process priors. When it comes to the centering point of the
posterior, we consider an asymptotically efficient estimator 7 with the following linear

representation:

?:7'0‘1‘

S|

i7~—0(zi) + OPo(n_l/2)> (4-1)

where Ty = 7, is the efficient influence function given in (3.5). Below, we write Lri(v/n(7, —
7)|Z™) for the marginal posterior law of y/n(7, — 7).

This asymptotic equivalence result is established using the so called bounded Lipschitz
distance. For two probability measures P, () defined on a metric space Z, we define the

bounded Lipschitz distance as

dpr(P,Q) = sup

feBL(1)

L Fdp — dQ)‘ | (4.2)

where BL(1) = {f 1 Z - Rsup,ez | f(2)| + sup,.. % < 1}. Here, | - |4, denotes
the vector /5 norm. Below is our main statement about the asymptotic behavior of the
posterior distribution of 7, that is derived from the Bayes rule given the prior specification
and the observed data Z™. As in the modern Bayesian paradigm, the exact posterior is
rarely of closed-form, and one needs to rely on certain Monte Carlo simulations, such as
the implementation procedure in Section [3| to approximate this posterior distribution, as

well as the resulting point estimator and credible set.

Theorem 4.1. Let Assumptions[1H{{] hold. Then, using standard Gaussian process priors
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(3.1) on n™ and an independent Dirichlet process prior on F, we have
dpr (EH(\/E(Tn —7) Z(n))> N<07V0)) —p, 0.

As a result, the posterior mean T, given in Section @ satisfies v/n (T, —10) = N(0, Vo)
under Py. Furthermore, for any o € (0,1), the Bayesian credible set C,(a) given in Section
@ satisfies P, (70 € Cn(a)) —-1—a.

Theorem establishes the BvM result for our Bayesian procedure using standard
Gaussian process priors. The entropy condition uniformly over n € H,, is satisfied if m,,
is sufficiently smooth, that is, if m, belong to a fixed Fy-Donsker class and, in particular,
rules out double robustness. On the other hand, note that the asymptotic equivalence is
obtained without any adjustment of prior or correction to posterior distributions, so the

full Bayesian flavor is preserved.

5 Bayesian Inference under Double Robustness

In this section, we show that the Bayesian procedure in Algorithm [2, which employs prior
and posterior adjustments, satisfies the Bernstein-von Mises Theorem under double robust
smoothness conditions. Herein, we clarify the notion of double robustness. In the earlier
development, the focus is typically on developing working parametric models for either the
propensity score or the conditional mean function, and the double robust estimation hedges
against the risk of model misspecification. However, implausible parametric assumptions
on the data generating process are of limited applicability to complex phenomena in
economics. Recent advances in the double machine learning literature have led to a number
of important developments in causal inference, utilizing flexible nonparametric or machine
learning algorithms. In this context, double robustness means the possibility to trade off

the estimation accuracy between nuisance functions.

5.1 High-level Assumptions

Below, we present the assumptions that enable double-robust inference through our

propensity score adjustments to the prior and posterior distributions.

Assumption 5 (DR Rates of Convergence). The estimators 7 and m, which are based on
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an auxiliary sample independent of Z™ satisfy |7 — mo|2.m, = Op, (70),

|7 = moll2.p, = Opy(en), and  sup |my —mol
17E7‘Ln

Q,Fo < €n;

where max{e,,r,} — 0 and y/ne,r, — 0. Further, |[§], = Op,(1).

Assumption [5| imposes sufficiently fast convergence rates for the estimators for the
conditional mean function mg and the propensity score my. The posterior convergence rate
for the conditional mean can be derived by modifying the classical results of (Ghosal, Ghosh,
and van der Vaart| (2000) by accommodating the propensity score-adjusted prior, in the
same spirit of Ray and van der Vaart| (2020). We refer to Breunig, Liu, and Yu| (2025a) who
showed that this assumption allows for double robustness under Holder type smoothness

assumptions.

Assumption 6 (DR Stochastic Equicontinuity). sup,cy, |Gn[(70 —7) (my, —mo)]| =
Opo(l).

Assumption [6] restricts the functional class H,, to form a Py-Glivenko-Cantelli class; see
Section 2.4 of van der Vaart and Wellner (2023)) and imposes a stochastic equicontinuity
condition on a product structure involving 5 and m,. Hence, the complexity of
the functional class (m, — mg) can be compensated by certain high regularity of the
corresponding Riesz representer and vice versa. This condition adapts the complexity
requirement of Breunig, Liu, and Yu (2025a) by only restricting the control arm.

Recall the propensity score-dependent prior on m given in (3.8), ie., m() =
¢t (W™(-) + A(+)). Below, we restrict the behavior for A through its hyperparameter
s, > 0. For two sequences {a,} and {b,} of positive numbers, we write a,, < b, if

limsup,, ,..(a,/b,) < o, and a, ~ b, if a,, < b, and b, < a

Assumption 7 (DR Prior Stability). W™ is a continuous stochastic process independent
of the normal random variable A ~ N(0,¢?), where ¢, < 1, ng2 — o0 and that satisfies
(i) (A A < ups2y/n | ZM) —p, 1, for some deterministic sequence u,, — 0 and (ii)
I ((w,A) :w+ A+ tn V2 eH™ | ZM) —p 1 for any t € R.

Assumption [7] incorporates Conditions (3.9) and (3.10) from Theorem 2 in Ray and
van der Vaart (2020), and it is imposed to establish the stability property of the adjusted

prior distribution. We will provide sufficient conditions for Assumption [7] in Section [6]
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5.2 Double Robust BvM Theorems

We now establish a semiparametric Bernstein—von Mises theorem for our double robust

Bayesian procedure given in Algorithm [2]

Theorem 5.1. Let Assumptions @(Z), @ @ and @ hold. Consider the propensity score
adjusted prior (3.8)) on 0™ and an independent Dirichlet process prior on F. Then we have

dpr, (Lu(vn ((r) — %) = boy) | ZM™), N(0,vo)) —p, 0,

where by, := Py [(mo — my)70]-

Theorem [5.1] shows that, under double-robust smoothness conditions, the BvM theorem
holds only up to a “bias term” by ,, which depends on the unknown conditional mean m.
This biased posterior makes the BvM not feasible in practice. We also emphasize that the
derivation of this result is different to the BvM results in Breunig, Liu, and Yu (2025a)), as

we need to control the denominator in the asymptotic expansions.

Remark 5.1 (Comparison of Bias in ATE/ATT Posteriors). |Breunig, Liu, and Yu (20254
showed that, for inference on the ATE in the cross-sectional case, the BuM holds only for
a biased posterior under double robust smoothness conditions, see also Remark (3.9 This
“bias term” is closely related to the influence function of the ATE, which takes the following

form

AT { (@Z;) - :f);i)) (oD X,) — my(De X.)) — (10(X,) — mn<Xi>>},

=94 TE(D;, X;)

where mo(-) = mo(1,-)—mo(0,-), my,(-) = my(1,-)=m,(0,-), and the Riesz representer v5'

as giwen in the ATE case, see |Breunig, Liu, and Yu (2025a). Referring to the influence
function of the ATT, we can also express it in terms of the conditional mean mo(D, X)
involving both treated and control groups, cf. Equation (8.5) in |Van der Laan and Rose

(2011)). Therefore, we have the following expression for the bias term in the ATT case:

o

%Z { ( Di 1= D: mlXy) A ) (mo( Dy, X;) — m(Dss X3)) — 22 (mo(X0) — 1y (X2)) }

=70 (D;,X5)

- %Z Y0(Ds, Xi) (mo(0, Xi) = my (0, X3)) = by "

0n >
i=1

20



where the simplification occurs because the term (D;/mo)(mo(1, X;) —my, (1, X;)) cancels out
in the difference.

The resulting simplification of the bias term aligns with our simulation results, which
show that standard Gaussian process priors also provide accurate coverage for the ATT in

many cases.

The next result is an immediate implication of Theorem [5.1] Specifically, it provides
a Bernstein-von Mises Theorem for Bayesian procedures that do not rely on posterior
correction. This can be achieved if the bias term is asymptotically negligible uniformly
over the class of hyperparameters, which requires more restrictive smoothness conditions

on the conditional mean function my.

Corollary 5.1. Let Assumptions @(z’), @ @ and @ hold. Consider the propensity score
adjusted prior (3.8) onn™ and an independent Dirichlet process prior on F. If, in addition,

bo., = op,(n~Y2) uniformly for n € H,, then we have
dpr, (Lu(vn(r, = 7) | Z™), N(0,v0)) —p, 0.

While Corollary allows for arbitrarily low regularity of propensity scores, it requires
the conditional mean function to be sufficiently smooth; specifically, the smoothness
of m must be greater than or equal to dim(X;)/2 (also referred to as the Donsker
property). This condition is also called single robustness by Ray and van der Vaart
(2020), and indeed, this corollary extends their findings to the inference on the ATT. Also,
as they point out, propensity score adjusted priors relax the uniformity condition
SUP, ey, |Gn [my —mo] | = op,(1) used in Theorem under standard Gaussian process
priors.

Under double robust assumptions, however, the Bayesian procedure that achieves the
BvM equivalence in Theorem is not feasible, because it depends on the term by,
which is a function of the unknown conditional mean my. Our objective is to maintain
double robust conditions, while considering pilot estimators for the unknown functional
parameters in by,. The correction term /l;n, as introduced in , results in a feasible

Bayesian procedure that satisfies the BvM theorem, as demonstrated below.

Theorem 5.2. Let Assumptions @(@), @ @ and @ hold. Consider the propensity score
adgusted prior (3.8)) on 0™ and an independent Dirichlet process prior on F. Then we have

s (La(vn(r, =7 = b)) | Z), N(0.v0)) —n, 0.
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where En = Po[(Mm—my)7]. As a result, the posterior mean 7)™ given in Section satisfies
Vn (PR — 1) = N(0,vo) under Py. Furthermore, for any o € (0,1), the Bayesian credible

set CPR () given in Section satisfies Py(o € CP(a)) > 1 — au.

~

Theorem shows that the Bayesian method proposed in Algorithm , Ty = Ty — by,
achieves the BvM result under double robust smoothness conditions. The following remark
clarifies the relationship when considering posterior correction alone, in which case BvM
results are available only under more restrictive smoothness assumptions on the propensity

score and the conditional mean function.

Remark 5.2. Building on the idea of a one-step update in frequentist semiparametric
estimation, | Yiu, Fong, Holmes, and Rousseau (2023) propose a different method of posterior
correction (without prior adjustment) that involves the efficient influence function. When
applying their methodology to the ATT, it is evident that both the conditional mean function
and the propensity score must satisfy the Donsker property, cf. Assumption 4(c) therein.
In contrast, the relazation of the Donsker property is one of the key technical innovation of

our double robust Bayesian inference.

6 Illustration under Low-level Conditions

In this section, we provide primitive conditions for the assumptions used to derive the
BvM Theorems. To do so, we focus on squared exponential process priors as an example
of Gaussian process priors. Moreover, we consider specific smoothness classes to derive the
explicit regularity conditions implied by our high-level assumptions.

A Gaussian process (GP) is completely characterized by its mean and covariance
functions (Rassmusen and Williams|, |2006)). Below we consider a GP prior, which has mean
zero and the covariance function specified by E[W (s)W (t)] = exp(—|s — t|7,). This so-
called squared exponential process prior, which is one of the most commonly used priors in
applications; see Rassmusen and Williams (2006 and |Murphy| (2023)). Following (Breunig,
Liu, and Yu, 20254), we consider a rescaled Gaussian process (W (ant) : ¢ € [0,1]7).

! can be thought as a bandwidth parameter. For a large a,, the prior

Intuitively, a,,
sample path t — W (a,t) is obtained by shrinking the long sample path ¢ — W (t). Thus,
it incorporates more randomness and becomes suitable as a prior model for less regular
functions, see van der Vaart and van Zanten| (2008, |2009).

Below, C*([0,1]") denotes a Hélder space with the smoothness index s, > 0.

Specifically, we illustrate our theory with the case where my € C*([0,1]?). Given such
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a Holder-type smoothness condition, we choose

an ~ nY/@smE) (1og ) (4P @smtp), (6.1)

The particular choice of a,, mimics the corresponding kernel bandwidth based on any kernel
smoothing method. Note that the minimax posterior contraction rate for the conditional
mean function m, given by e, = n=sm/(2smtP)(Jog p)sm(1+P)/@sm+p); gee Section 11.5 of
Ghosal and Van der Vaart| (2017).

Proposition 6.1 (Unadjusted Squared Exponential Process Priors). Suppose mgy €
C*([0,1]7) and my € C*([0,1]?) under the smoothness conditions min(s,,S,,) > p/2.
Consider the prior on m given by m(x) = q~* (W™(x)), where W™ is the rescaled squared
exponential process, with its rescaling parameter a, of the order in , combined with

an independent Dirichlet process prior on F. Then, under Assumption |1, the posterior

distribution for the ATT satisfies Theorem [4.1]

Proposition makes explicit the smoothness requirements for the BvM Theorem to
hold when standard Gaussian process priors are placed on the conditional mean function
m. This result shows that the smoothness of both the conditional mean function and
the propensity score function must exceed dim(X)/2. Conversely, in situations where one
is confident that these regularity conditions are met, no additional modifications to the

Bayesian procedures are necessary to achieve the BvM result.

Proposition 6.2 (Adjusted Squared Exponential Process Priors). The estimator 7 satisfies
Al = Op,(1) and |5 — vo|w = Op,((n/logn)=*=/Zs=*P)) for some s, > 0. Suppose
mo € C*([0,1]P) and some s, > 0 with \/s$; S, > p/2. Also, |m — mg

Op, ((n/logn)=m/Zsm¥2)) = Consider a Dirichlet process prior on F combined with the

|27F0

independent prior on m given by m(zx) = ¢ H(W™(x) + A5(0,x)), where W™ is the
rescaled squared exponential process, with rescaling parameter a, satisfying and
(n/log n)_SW/(28m+p) < Uups, for some deterministic sequence u, — 0, and ¢, < 1. Then,
under Assumption[l] the corrected posterior distribution for the ATT satisfies Theorem[5.1]

Proposition requires ./Sp S, > p/2, which represents a trade-off between the
smoothness requirement for mg and 7. This corresponds to the double robustness property;
i.e., a lack of smoothness of the conditional mean function mg can be mitigated by exploiting

the regularity of the propensity scorem, and vice versa.
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7 Finite Sample Results

This section investigates the finite sample performance of the proposed Bayesian
estimation/inference approaches and then apply them to the well-known DiD study of
Card and Krueger| (1994).

7.1 Simulation Evidence

We now present Monte Carlo simulation results to compare our proposed semiparametric
Bayesian methods with existing frequentist approaches. Consider the following data

generating process (DGP) for observed variables (Y1, Yiz, D;, X)) given by
Xi~N((1,-1,1,-1,...,(=1)»H7",8) and D;|X; ~ Bernoulli (¥ [¢(X;)]),

where the covariance matrix ¥ = (X;x)1<jk <p i determined by X5 = 0.5/%=3l. We generate

outcomes in two periods:

Yi = h(Xi) + Dip(Xs) + i + €1,

We consider the following four different designs based on different specifications of the

functions g and h:
Design It g(x) = 0.5 37 /4, hiw) = X_, 0/,
Design IT: g(z) = 0.5, 2;/j, h(x) = 0.8 _ 2;/j + 0.2, x3/5,
Design III: g(z) = (0.527_  2;/5 + 0.5 42/4) /4, h(x) = 3_ x;/],
Design IV: g(z) = (0.5 37, x;/j +0.5 37, 23/5) /4, h(x) = 0.8 30 2/ +0.237_, 23/5.

The fixed effect o; and the error terms are standard normal, with (ay, €1, €:2(0), €2(1)) T ~
N(0, 1), where I, denotes the four-dimensional identity matrixE] The true ATT is zero
for all cases. Our DGPs follow the structure of DGP1 in [Sant’Anna and Zhao (2020) but
allow for more covariates and a possibly nonlinear function A(-). In our simulations, we

analyze the effect of varying the dimension of covariates p € {5, 10,20} and varying sample

3Tables and in the Supplementary Appendix |[E| present additional simulation results for cases
where the error terms follow chi-squared distributions or include heteroskedasticity. The finite-sample
performance in these cases is similar to that observed in Table [1| for standard normal errors.
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sizes n € {500, 1000}. Throughout our simulations, the number of Monte Carlo replication
is set to 1000.

Our nonparametric Bayesian (hereinafter Bayes) and the double robust Bayesian (DR
Bayes) methods are implemented following Algorithms (1| and [2| in Section [3| using the
MATLAB package GPML to draw posteriors. Both Bayesian methods are implemented based
on B = 5000 posterior draws. Here, we apply the exponential family specification in (2.4))
to the Gaussian case. The resulting posterior distribution of the conditional mean function
is available in closed form (see Supplementary Appendix [D] for details), eliminating the
need for computationally costly Monte Carlo samplers like MCMCJ] The tuning parameter
¢, for DR Bayes, which corresponds to the standard deviation of the adjusted prior, is
set according to the prior specification step in Algorithm [2} In Supplementary Appendix
[E] Table demonstrates that the performance of DR Bayes is stable with respect to the
value of ¢,. DR Bayes in Table[l|uses the full sample twice in computing the prior/posterior
adjustments and the posteriors of the conditional mean function. As shown in Table in
Supplementary Appendix [E] results from sample splitting are comparable to those in Table
a

We also compare the Bayesian methods to several frequentist DiD estimators. DR
corresponds to the improved doubly robust DiD estimator proposed by [Sant’Anna and
Zhao| (2020). OR, the outcome regression approach, refers to the sample analog of
where the conditional mean myq is estimated by a linear regression of AY; on X; using
the sample of the control arm. Two types of inverse propensity score weighted (IPW)
estimators are considered: IPWHT refers to the IPW estimator in |Abadie (2005), which
is of the [Horvitz and Thompson| (1952)) type. IPWHaek refers to the Hajek (1971) type
IPW estimator that normalizes the weights to sum up to oneﬂ TWFE corresponds to
the standard two-way-fixed effect model that regresses Y;; on D;, t, the interaction D; x ¢
and X;. DML corresponds to the double/debiased machine learning ATT estimator of
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey| (2017) or Chang (2020)),
where the nuisance function 7y is estimated by logistic LASSO and m estimated by random

forestsﬂ Table [1| presents the finite sample (mean) bias of the point estimator, coverage

41f the conditional density function in belongs to another distribution in the exponential family,
the posterior of the conditional mean can also be approximated using an analytical approximation, such
as the Laplace method, see [Rithiméki and Vehtari (2014)).

5The expression for the Hajek—type IPW DiD estimator is given in equation (4.1) of |Sant’Anna and
Zhao| (2020)).

We apply random forest to estimate mg to cope with the nonlinear function forms in Designs II and
IV, and to match DML with our Bayesian procedures that estimate mg nonparametrically. Frequentist
DiD estimators, except for DML, are implemented using the R package DRDID, while DML is implemented
using the R package DoubleML.

25



probability (CP) and the average length (CIL) of the 95% credible/confidence interval for

the Bayesian and frequentist methods mentioned above.

Table 1: Simulation results for Designs I and II, correctly-specified propensity score.

Design Bias CP  CIL Bias CP  CIL Bias CP CIL
I n = 500 p=>5 p=10 p =20
Bayes 0.033 0.962 0.615  0.048 0.927 0.628  0.076 0.909 0.650
DR Bayes  0.010 0.960 0.628  0.012 0.934 0.657  0.028 0.926 0.691
DR -0.012 0.943 0.734  -0.004 0.908 0.664  0.001 0.903 0.620
OR 0.001 0.956 0.585  0.004 0.937 0.592  0.007 0.941 0.609
[PWHT 0.025 0.939 1.717  -0.019 0.933 1.987 -0.013 0.923 2.311
[P WHajek 0.026 0.938 1.075 0.004 0.909 1.202 0.011 0.909 1.313
TWFE 2.306 0.000 1.114  2.575 0.000 1.141  2.690 0.000 1.154
DML 0.012 0.964 0.883  0.076 0.938 1.061  0.213 0.915 1.278
n = 1000 p= p=10 p =20
Bayes 0.018 0.943 0.428  0.018 0.949 0.434  0.035 0.938 0.445
DR Bayes  0.004 0.948 0.438  -0.001 0.950 0.448  0.006 0.948 0.464
DR -0.002 0.936 0.524  -0.006 0.934 0.479  -0.002 0.928 0.451
OR 0.004 0.948 0.413  -0.004 0.945 0.416  0.002 0.951 0.423
[PWHT -0.002 0.944 1.236  0.001 0.949 1.345  0.005 0.939 1.506
[P WHajek 0.004 0.936 0.788  0.003 0.941 0.850  0.010 0.933 0.922
TWFE 2.310 0.000 0.790  2.573 0.000 0.808  2.694 0.000 0.820
DML 0.003 0.963 0.594  0.039 0.961 0.710  0.144 0.929 0.875
11 n = 500 p= p=10 p =20
Bayes 0.086 0.908 0.635  0.111 0.872 0.649  0.139 0.857 0.672
DR Bayes  0.034 0.933 0.637  0.043 0.904 0.665  0.063 0.908 0.697
DR 0.013 0.941 0.774  0.025 0.897 0.723  0.048 0.904 0.685
OR 0.263 0.695 0.713  0.274 0.684 0.725  0.280 0.695 0.740
[PWHT 0.038 0.926 2.144  -0.023 0.915 2.505 -0.015 0.920 2.934
[P WHajek 0.039 0.926 1.392 0.006 0.898 1.499 0.017 0.898 1.574
TWFE 2.165 0.000 1.263  2.359 0.000 1.282  2.450 0.000 1.290
DML 0.014 0.951 1.010  0.070 0.917 1.191  0.204 0.903 1.414
n = 1000 p=> p=10 p=20
Bayes 0.047 0.929 0.440  0.058 0.914 0.449  0.078 0.894 0.460
DR Bayes  0.015 0.942 0.442  0.014 0.937 0.453  0.026 0.931 0.467
DR 0.008 0.939 0.558  0.011 0.927 0.525  0.028 0.915 0.503
OR 0.257 0.505 0.507  0.264 0.457 0.512  0.274 0.457 0.520
IPWHT -0.001 0.942 1.563 0.004 0.938 1.708 0.012 0.934 1.935
[P WHajek 0.006 0.926 1.035 0.006 0.932 1.073 0.018 0.923 1.135
TWFE 2.162 0.000 0.896  2.356 0.000 0.909  2.457 0.000 0.918
DML 0.000 0.940 0.666  0.037 0.948 0.780  0.140 0.914 0.970
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Concerning the Bayesian DiD for estimating the ATT, Table [1] shows that the
nonparameteric Bayes performs well in Design I, but undercovers by 9% to 14% in Design
IT when p = 10 and 20. DR Bayes improves the coverage probability of nonparameteric
Bayesian inference in these cases and performs well across both designs, different dimensions
p, and sample sizes n. The point estimator produced by DR Bayes also leads to a smaller
bias than the nonparametric Bayes. On the other hand, the nonparametric Bayes yields
shorter confidence intervals. We also see that for large values of p, nonparametric Bayes
tends to undercover.

In Table [1], the frequentist DiD estimators DR, two types of IPW, and DML — each of
which is double robust or at least robust to misspecification in the conditional mean function
— exhibit good coverage performance in both designs. Among them, DR produces slightly
longer ClIs than our DR Bayes in most cases; IPW estimators yield longer CIs than most
of other methods, including both Bayesian procedures; and DML yields slightly shorter
CIs than DR Bayes in Design I but noticeably longer Cls in Design II. Unsurprisingly, OR
suffers from severe undercoverage in Design II. TWFE performs poorly in both designs,
where the time trend is linearly correlated with the covariates X, as also documented in
Sant’Anna and Zhao, (2020)).

Table [2| presents the finite sample performance of aforementioned DiD estimators when
the function g(-), used to specification of the propensity score, is nonlinear. DR Bayes,
DR, and IPW estimate the propensity score using logistic regression, while DML uses
logistic LASSO. Table [2] illustrates the impact of misspecifying the propensity score on
these methods. DR Bayes maintains reasonably good performance in Design III. Although
its performance deteriorates in Design IV, particularly as dimensionality of X increases,
it still outperforms frequentist estimators, including double-robust methods like DR and
DML. Nonparametric Bayes, using standard Gaussian process priors, avoids estimating
the propensity score under misspecification and hence performs well in Design III while

outperforming all other methods in Design IV.
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Table 2: Simulation results for Designs III and IV, misspecified propensity score.

Design Bias CP CIL Bias CP CIL Bias CP CIL

111 n = 500 p=>5 p =10 p =20
Bayes 0.029 0.937 0.593  0.030 0.941 0.607  0.060 0.900 0.659
DR Bayes  0.019 0.925 0.559  0.020 0.924 0.577  0.047 0.871 0.610
DR -0.026 0.951 0.691  -0.012 0.930 0.631  -0.009 0.911 0.614
OR 0.000 0.955 0.561  0.004 0.942 0.569  0.003 0.926 0.604
[PWHT 0.301 0.760 0.931 0.243 0.835 0.959  0.250 0.871 1.244
[PWHajek 0.220 0.783 0.745  0.185 0.838 0.785  0.190 0.864 0.944
TWFE 1.258 0.021 1.178  1.047 0.120 1.258  1.083 0.123 1.321
DML 0.099 0.919 0.700  0.171 0.875 0.779  0.313 0.792 0.943
n = 1000 p=2>5 p =10 p =20
Bayes 0.015 0.944 0.411  0.012 0.938 0.417  0.018 0.927 0.439
DR Bayes  0.010 0.938 0.390  0.007 0.926 0.398  0.010 0.921 0.419
DR -0.014 0.938 0.488  -0.008 0.944 0.446  -0.010 0.931 0.438
OR 0.002 0.944 0.395  -0.002 0.950 0.398  -0.002 0.936 0.418
IPWHT 0.294 0.569 0.644  0.238 0.686 0.620  0.240 0.744 0.737
[PWHajek 0.213 0.638 0.524  0.180 0.740 0.525  0.182 0.759 0.600
TWFE 1.268 0.000 0.835  1.047 0.010 0.892  1.072 0.014 0.943
DML 0.074 0.895 0.467  0.123 0.852 0.516  0.228 0.726 0.621

v n = 500 p=2> p=10 p=20
Bayes 0.088 0.920 0.614  0.095 0.883 0.626  0.152 0.816 0.683
DR Bayes  0.075 0.901 0.567  0.082 0.862 0.585  0.135 0.796 0.614
DR 0.151 0.856 0.729  0.179 0.797 0.687  0.197 0.760 0.678
OR 0.253 0.659 0.645  0.248 0.681 0.653  0.257 0.686 0.691
IPWHT 0.493 0.579 1.129  0.446 0.656 1.169  0.467 0.733 1.531
[PW Hajek 0.393 0.596 0.936  0.368 0.637 0.945  0.379 0.670 1.070
TWFE 1.401 0.004 1.287  1.235 0.057 1.343  1.264 0.046 1.398
DML 0.165 0.850 0.736  0.273 0.735 0.802  0.457 0.538 0.969
n = 1000 p=2> p=10 p=20
Bayes 0.052 0.914 0.423  0.057 0.897 0.429  0.076 0.881 0.452
DR Bayes  0.045 0.891 0.393  0.049 0.882 0.402  0.064 0.859 0.423
DR 0.153 0.780 0.516  0.176 0.695 0.486  0.186 0.660 0.485
OR 0.247 0.444 0.456  0.235 0.479 0.458  0.245 0.482 0.480
IPWHT 0.477 0.330 0.790  0.437 0.378 0.764  0.456 0.469 0.912
[PWHéjek 0.377 0.403 0.667  0.358 0.403 0.647  0.372 0.431 0.709
TWFE 1.403 0.000 0.912  1.230 0.000 0.952  1.257 0.001 0.998
DML 0.122 0.816 0.485  0.208 0.664 0.525  0.361 0.376 0.643
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7.2 Empirical application: Minimum Wage

We apply Bayesian DiD methods to the well-known minimum wage study of |Card
and Krueger (1994)[] The outcome variables Y;; and Y, are full time equivalent
(FTE) employment of fast-food stores in New Jersey and Pennsylvania before and after
New Jersey’s raise of minimum wage. The treatment variable takes one for fast-food
stores in New Jersey and zero otherwise. The set of covariates X includes the twelve
store characteristics surveyed before the minimum wage change: indicator for company
ownership, three chain type dummies, numbers of managers, cash registers and hours
open per weekday, time to the first wage raise, indicator for offering recruitment bonus,
item prices of medium soda, small french fries and a main course. We would like to see
whether the findings of |(Card and Krueger| (1994) which considers as store characteristics the
company ownership indicator and chain type dummies in their regression-adjusted model
would change if more covariates are included and a flexible functional form of mg(x) is
allowed.

The sample size is 307. Since the data contains a non-negligible proportion of units
with propensity score estimates very close to 1, we follow Crump, Hotz, Imbens, and
Mitnik (2009) and discard observations with the estimated propensity score outside the
range (0,1 — t], with the trimming threshold ¢ € {0.05,0.01}.

Table 3: Estimates of ATT for the minimum wage increase: sample trimmed based on
estimated propensity score within (0,1 — t], n, and n. are the number of treated and

control units after trimming.

t =0.05(n; = 116,n, = 56) ¢ = 0.01(n¢ = 177, nc = 57)

ATT 95% CI CIL ATT 95% CI CIL
Bayes 1.907 [-1.427,5.256] 6.683 [ 1.990 [-0.853, 4.813] 5.666
DR Bayes 2.024 [-0.958, 4.959] 5.917 | 2.006 [-0.724, 4.790] 5.514
DR 2.894 [-0.749, 6.538] 7.287 | 3.664 [-0.325,7.652] 7.976
OR 3.633 [-0.781, 8.047] 8.828 | 4.432 [-0.334, 9.197] 9.531
IPWHT 1783 [-1.661, 5.226] 6.887 | 1.417 [-1.994, 4.827] 6.821
IPWHaek 1 468 [-1.685, 4.620] 6.305 | 1.119 [-1.771, 4.008] 5.779
TWFE 2561 [-0.841, 5.964] 6.805 | 2.691 [-0.604, 5.986] 6.590
DML 2.291 [-4.047, 8.629] 12.677 | 3.027 [-2.574, 8.628] 11.202

Table 3| presents the ATT estiamtes for Bayesian and frequentist methods. As we see, all

methods produce positive but insignificant ATT estimates for the impact of minimum wage,

"The data is available on https://davidcard.berkeley.edu/data_sets.
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which is in line with the findings of |(Card and Krueger| (1994). For example, nonparametric
Bayes and DR Bayes yield ATT point estimates ranging from 1.907 to 2.024 and confidence
intervals covering 0 with the length from 5.514 to 6.683. Bayesian methods also provide
shorter confidence intervals than most of the frequentist methods including the widely-used
TWFE estimator, except that the credible interval produced by semiparametric Bayes is
slightly longer than the confidence interval of Hdjek—type IPW when ¢ = 0.05.

If we do not trim the propensity score, the failure of the overlap condition prevents
us from using estimators that involve the inverse propensity score. Among estimators
that do not use the propensity score, nonparametric Bayes gives an ATT estimate of
1.935, with a 95% confidence interval of [—0.460,4.341], for the full sample without any
trimming (¢ = 0,7; = 249,7n. = 58). OR yields an estimated ATT of 3.351, with a 95%
CI of [—1.233,7.936]. TWFE provides an estimated ATT of 2.635, with a 95% CI of
[—0.622,5.891]. It turns out that our semiparametric Bayesian method continue to yield
stable results when the overlap condition is nearly violated. In sum, our Bayesian methods,
which allows a flexible form of the conditional mean function mg(x) as well as a rich set
of covariate, generate comparable ATT estimate with the original findings in |Card and
Krueger (1994)@ Therefore, our Bayesian DiD methods confirms the robustness of findings

in the classic literature against model specifications.

8 Extensions

We now provide extensions to the canonical DiD panel data setup and show that our
Bayesian DiD methods, described in Section [3] can be conveniently extended to cases such

as multiple periods with staggered entry and repeated cross sections.

8.1 Extension to Multiple Periods and Staggered Entry

The Bayesian DiD methods described in Section |3[can be conveniently extended to the cases
with multiple periods and staggered intervention (De Chaisemartin and d’Haultfoeuille,
2020; (Callaway and Sant’Annal, 2021; Sun and Abraham)| 2021} Borusyak, Jaravel, and
Spiess|, [2024). The related literature focuses on the identification of disaggregated causal

parameters and some proper aggregation of these parameters. This section extends our

8When covariates are not included in the model, Card and Krueger| (1994) report the difference-in-
difference estimate of 2.76 (standard error 1.36), and the regression adjusted model with controls for chain
and ownership dummies yields an estimate of 2.30 (standard error 1.20).
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Bayesian method for inference on the disaggregated ATT, specifically the group-time ATT
proposed by (Callaway and Sant’Anna (2021).

Suppose the available panel data consists of T' periods indexed by ¢t = 1,...,T and
the earliest treatment intervention occurs at period S. We assume that the treatment
intervention remains once a unit get treated. As a result, the entire path of treatment
assignment for each unit can be summarized by his/her first treated period (cohort),
denoted by the cohort variable G; € {S,...,T, o0}, where G; = o0 means the unit 7 never
gets treated. Let the cohort indicators D;, denote whether unit ¢ first receives treatment
in period g € {S,...,T, 0}, where D;,, = 1 indicates that unit ¢ never receives treatment.

We assume that never-treated units exist. The potential outcomes depend on cohorts
and thus are denoted as Yi(g) for g € {S,...,T} and Y;(0) for G; = oo. Obviously,
Z;S D;; + Dis, = 1. The realized outcome for unit ¢ at time ¢ is Y;; = Yu(0) +
S Dig (Yalg) — Ya(0)).

We focus on the analysis of treatment effect heterogeneity by allowing the ATT to vary
with the cohort g (g # o0) and the time period t > g¢:

T()g,t = Eo[Yi(g) — Y2(0)| Dy, = 1], for g=S,..., T and t =g,...,T.

Suppose a vector of pre-treatment covariates X; is also available, a vector of dimension
p, with the distribution Fj and the density f;. The researcher observes independent and
identically distributed observations of (Y;1,...,Yir, Dis, ..., Dir, Dis, Xi), 1 =1,... n.

Applying the identification strategy in |Callaway and Sant’Annal (2021), the ATT
parameters Tg’t forge G:={S,...,T}andt = g,...,T can be identified under Assumption
belowﬂ For the identification of the ATT, we follow the setup by Callaway and Sant’ Anna
(2021)) and impose the following conditions, which correspond to their Assumptions 3, 4,
and 6 (in their 6 = 0 case).

Assumption 8. For all z in the support of Fix and g € G we have:

(i) Eo[Yi(g) | Dy =1,X =2] =Eo[Y3(0) | Dy =1, X =z] forall te{l,...,9— 1},

(i) Eo[Y:(0) =Y1(0) | D, =1,X =z] = E¢[Y:(0) —Y1(0) | Dy =1, X = 2] for all t €
{g,...., T},

(ili) Py (Dy=1)>ecand Py (Dy=1|Dy+ Dy =1, X = ) < 1— ¢ for some € > 0.

Assumption [§[i) is a “no anticipation” assumption, Assumption [§(ii) is a conditional

parallel trend assumption based on the never-treated cohort, and Assumption [§](iii) is an

9Callaway and Sant’Annal (2021) propose two identification strategies, depending on the whether the
parallel trend assumption is imposed on the never-treated cohort or “Not-Yet-Treated” cohorts. Here we
consider the former version.
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overlap restriction. Under Assumption [8] |Callaway and Sant’Annal (2021) show that the
ATT in the staggered entry case is identified by

18 =Ko [AY, —m§(X) | Dy =1], forgeGand t =g,...,T, o, (8.1)

where the difference operator A, is defined by A,Y; := Y, —Y,_; and the conditional mean
function m§*(z) := Eo[A,Y; | Doy = 1, X = 1],

The identification result in (8.1) uses the cohort g (i.e., D, = 1) as the treated group
and the “never treated” cohort (D, = 1) as the control group. Using the transformed
cross-sectional data (A,Yj, Dig, X;) for i = 1,...,n and following the notation in Section
, we can write ATT for a given pair (g,t) under a family of probability distributions

{P,:neH}as
gt EalDgAgYi — Dymi"(X] (8.2)
! E,[Dy] ’

where E, denotes the expectation with respect to the distribution of (A,Y;, Dy, X). The
Bayesian DiD procedures in Section [3| can be applied in the staggered DiD case to obtain

the posterior draws {(Tg’t)s cs=1,...,B } Specifically, this can be achieved by replacing
AY;, D;, my(-), 7y, and m,(-) in Algorithmorby AYi, Dig, m*(-), 79 := E,[D,y] and
m9(-) := Py (Dyg=1| Dy + Dy =1, X = -), respectively, as defined in this section.

The first resulting Bayesian estimator is denoted by Tg’t, while the second, double-robust
Bayesian method is denoted by %g’t for a cohort g € G. The next result is an immediate

implication of Theorem 4.1} and Theorem [5.2 and its proof is thus omitted.
Corollary 8.1. Let Assumption[§ hold, and suppose that for any g € G:

(i) Assumptions hold under the g-specific components, i.e., (AY;, D;,my,(+), 7y, 7 (+))
are replaced by (AYy, D, mg’t('), 7, 7(:)). Then, the Bayesian method Tg’t satisfies

the BuM result in Theorem [{.1].

(i) If Assumptions [J(i), [3, [0, and [7] hold under the g—specific components. Then, the
double robust Bayesian method %,v;”t satisfies the BuM result in Theorem .

Corollary pertains to inference on cohort-specific ATTs and establishes BvM
results for our two Bayesian methods, employing either standard Gaussian process priors
or prior/posterior adjustments via the cohort-specific propensity score. We note that
extending this framework to aggregate ATTs is highly non-trivial, as it requires a joint
modeling of outcome variables across different cohorts and time periods. Hence, distinct

prior and likelihood specifications in the Bayesian methodology, as well as prior/posterior
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adjustments of the double robust version, are needed. A thorough investigation is therefore

left for future research.

8.2 Repeated Cross Sections

Our method also allows for repeated cross-sections following |[Abadie| (2005), as also
considered by Sant’Anna and Zhao| (2020)). In this case, we consider a dummy variable
T; that takes the value two if observation ¢ is only observed in the post-treatment
period, and one if observation i is only observed in the pre-treatment period. Define
Y; = (T; — 1)Yi2 + (2 — T;) Yi1. The available data is {Y;, D;, T;, X;};_ ;. Let ny and ny be
the sample sizes for the post-treatment and pre-treatment periods, respectively, such that
n = ng + ny; let P(T" = 2) € (0,1). The following assumption restates Assumption 3.3 of
Abadie| (2005)).

Assumption 9. Conditional on T; = 1, (V;, D;, X;) are i.i.d. from the distribution of
(Y1, D, X); conditional on T; = 2, (Y;, D;, X;) are i.i.d. from the distribution of (Ys, D, X).

Under Assumptions [T} we can write

Ry [Bo[Ys | D = 0,X = o] —Bo[¥; | D=0,X =] | D =1].

Then using Assumption [0, we can identify ATT as
T0 IE()[Y ’ D= 1,T: 2] —Eo[Y ’ D= 1,T: 1] —Eo[mo(X,Q) —mo(X,l) | D = 1],

where mg(z,t) =Eo[Y | D=0, X =2,T =t] for t = 1,2.

With an analogous reparametrization as in the panel data case, we obtain

EW[DYIL{T=2}] ]En[DYIL{T=1}] E, [D(m,(X,2) —m,(X,1))] .

T, =
T Ey[Dlyg—y]  E[Dlg—y] E, [D]

Interestingly, the analysis of the last conditional expectation involves a difference of
conditional moment function as for the average treatment effect and can be analyzed
similarly to Breunig, Liu, and Yu| (2025a) in absence of prior corrections. For our double
robust method in repeated cross-sections, we emphasize that the efficient influence function
takes a different functional form (see Sant’Anna and Zhao (2020)). This translates to

a modified prior and posterior adjustments of our double robust Bayesian procedure in
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Algorithm [2 While this procedure would be analogous to our double robust method, a full

derivation of its asymptotic properties lies beyond the scope of this paper.

9 Conclusion

This paper introduces new semiparametric Bayesian procedures that satisfy the Bernstein-
von Mises results in the DiD setup. Our first proposal, based on standard Gaussian process
priors, provides a Bayesian analog to the outcome regression in Heckman, Ichimura, and
Todd| (1997). Through simulations, we show that it performs well in models that are not
overly complex and, since no propensity score specification is required, it is not sensitive
to the overlap issues. Our second, double robust proposal incorporates prior/posterior
corrections based on estimated propensity scores. In simulations it works well for complex
models, i.e., when the number of covariates is large. Overall, our Bayesian methods
exhibit remarkable finite sample performance, while adapting to the functional form of the
conditional mean function. Although our focus is primarily on the DiD panel data case,

we also discuss extensions to the repeated cross-section case and staggered interventions.
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A  Proofs of Main Results

In the Appendix, C' > 0 denotes a generic constant, whose value might change line by
line. We introduce additional subscripts when there are multiple constant terms in the
same display. We also show in the Supplementary Appendix that v, determines the least
favorable direction of Bayesian submodels. For simplicity of notation we write ), instead
of 37" | below.

Our theoretical results relies of key decomposition of the frequentist estimator 7 implied
by asymptotic efficiency. The minimal asymptotic variance for estimating the ATT can be

written in terms of the information norm as
P()(’)/(])z = PO%(? = Vp, (Al)

which is used in the results below. In the following, we denote the log-likelihood based on
Z™ as

ln(n) = ZIngn(Zi) =0 (n™) + (),

where each term is the logarithm of the factors involving only m or f. Note that we only
put a prior distribution on 7™ and 1/, and thus the consideration of the likelihood above
is sufficient, as shown in the following proofs.

Define the set H,, that contains m, with posterior probability going to 1. Recall the
definition of the measurable sets H™ of functions 1 such that II(n e H™ | ZM) —p 1. We
introduce the conditional prior IL,(-) := II(- n H}")/II(H}'). Below, we make use of the

notation v, := m,/m.
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As we show the conditional weak convergence via examining the convergence of the
conditional Laplace transform, the following posterior Laplace transform of y/nv, (1, —7) —

bo,, given for all £ € R by
L(t) = EM [et\/ﬁ[vn(m—?)—bo,n] | Z(n)] 7 (A.2)

plays a crucial role in establishing the BvM theorem ((Castillo, [2012; Castillo and Rousseaul,
2015; [Ray and van der Vaart, 2020)). See also Lemma in the Supplementary Appendix
[C] Recall the “bias term” given in Theorem [5.1]is

boy © = %Z'YO(DiaXi)[mO(Xi) - mn(Xi)]

e e L

0o 1—mo

Y

The “de-biasing term” of our posterior correction is given by

>

By = = SIADL X)X — my(X0)]

- %Z (% B 1 :?Di 1 i?(gl))(z)) [(X;) — my(X5)].

Because the expansions in the proof of both BvM theorems largely coincide, we decide to
keep the bias term explicit even in proving the non-double robust version where the bias

term is asymptotically negligible.
Proof of Theorem [4.1l. We begin with a useful decomposition of 7, — 7. We may assume

T = 79 + Pu[70], which satisfies (4.1)). Consequently, from the definition of the efficient

influence function in (3.5)) we infer

F-n o B (T (4% - ) - D)

In addition, the definition of the Bayesian procedure in (3.2]) implies

E,[D (AY —m,(X)) — Dry]
E,[D] '

Tn—T():
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Thus, using the notation v, = m, /1, we obtain the decomposition
vVl = 7) = “2nlry = m = (7 = 7))
~ - VRE, [D(AY —my (X)) - Dr]
oG m(()f; (&7~ () = D)
\FZ( e (Ay; —my(X;)) —Dm) (1—w,).

=:Rnn

Considering the second summand on the right hand side, we make use of the relation

1 Z (Di — TolXy) (AY; —mo(Xy)) — Dﬂo)

Ton = 1 —7T0(XZ‘)

:WO_HZ< Di(AY; — mo(X;) — 70) — (1 — D)

o (X;)

Ty (A% mO(X))>

and hence arrive at the following decomposition

o

/(T — 7) — LR = \FZ ( [ (AY = my(X) — TO)] DAy — ) + TO))

v~

=Py Ba) | 2 (A () —70)]

In order to show the conditional (on the observed data) convergence of the posterior
distribution in the bounded Lipschitz distance, it is sufficient to show the pointwise
convergence of the posterior Laplace transform for every ¢ in a neighborhood of 0, by

Theorem 1.13.1 of van der Vaart and Wellner| (2023). The Laplace transform given in
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(A.2)) can be written for all t € R as

H(Fn | Zr.([:’rlgated)'

S'H tf“n(Tn 7)—tRn,n—t+/nbo, 71] dH( )
J $3, €0 dII(n )

We consider the perturbation via the least favorable direction for the loglikelihood part

that depends on m,,. Specifically, we introduce

t (1—-d) m(z)
m - m = m . h w0 = n ’
"It (") = \/57 0 ere Teo m, 1—m(z)

which defines a perturbation of n™ along the control arm of the least favorable direction

70,0-
We further evaluate for the Laplace transform for all ¢ € R:

(F | ZTreated)

JSHn tfvn Tn—7)—tRn,n—t/nbo, n] f?(nm)—ﬁﬁ(n{”)eﬂmn{”)d]‘[(n )
$3, € OO AT (™)

By Lemma we further obtain for the likelihood functions uniformly for n € H,,:

Grn™) — 3 (") = : Z 1 ;0 i1 iowi))() (AY; —mo(Xy))

©
ﬁ 1-D 7m(X)
?E(’l 2 (1= m(X))?
@
Z 2 ii ) 5 (m0X) = 1y (X2)) o (1)

©

We immediately see that the term (B cancels with (©), and @ + (© cancels ty/n by, in the

expression for the Laplace transform [,(¢). In addition, because all variables have been

7

(AY —mp(X))*

/

integrated out in the integral in the denominator, it is a constant relative to either m,, or
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F,,. By Fubini’s Theorem, the double integral without this normalizing constant is

L;Xp (tEE T Ry O |+ 20

« fexp (v, = 2) | £ 8= i) = )| ) A1CE, | 252 ) ).

o

.

v

®

Note that the posterior law of F; conditional on the observed data is equivalent to the
Bayesian bootstrap measure. Using the envelope condition imposed in Assumption [3 we
may apply Lemma to the () term so that for the conditional Laplace transform we
have for all t € R:

L,(t) = exp (g (Varo [B(AY —mo(X) TO)] + Eo ll ;gD (1 Zr[zir(j(())())Q S mO(X))QD)

o

SH efﬁ(n,’ﬁ“)dﬂ(nm)
8 SHn e o AT () X exp(or, (1)
t2

= exp (EVO) + op, (1),

where the last line follows from the prior invariance property imposed in Assumption 4| and
Lemma [C.9

We apply Lemma by taking S,, = v/nv, (1, —7) — by, — Ry, and the limiting law L
as the normal distribution N (0, V). Thus, we have shown that the posterior distribution of
nuy(m, —T) — by, — Ry, converges to N (0, Vp) in the bounded Lipschitz norm. Note that
the bias term is asymptotically negligible given the stochastic equicontinuity in Assumption
2l We have also shown the negligibility of Ry, in Lemma[C.§ Hence, we apply Lemma|[C.2]
to show the conditional convergence of \/n(r, —7), as v, converges to 1, in F-probability

conditional on the data, which concludes the proof. ]

Proof of Theorem[5.1. Since the estimated least favorable direction 4 is based on
observations that are independent of Z(™, we may apply Lemma 2 of Ray and van der
Vaart| (2020). That is, it suffices to handle the ordinary posterior distribution with 7
set equal to a deterministic function ,. Consequently, for the analysis of the conditional
Laplace transform 1,,(t), we can follow the proof of Theorem . Further, the prior stability
condition is satisfied by Assumption [7]and the proof of Lemma B.2 from [Breunig, Liu, and
Yu| (2025D).

In sum, we have shown that /nv,(7, — 7) — by, — Ry, converges to the normal
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distribution N (0, Vy) in bounded Lipschitz norm by Lemma . In Lemma , we prove
that sup, s, v/n(v, — 1)bo, = op,(1), which implies the conditional weak convergence of
/nuy (T, — T — by,y) to the same normal distribution (under Fp). Finally, we establish this
result for \/n(m, — 7 — boy,,) by dropping the scaling factor v,, due to Lemma . O

Proof of Theorem[5.2. 1t is sufficient to show that

N —1/2
Sup ‘bO,n - bn‘ = op,(n7%),
neEHn

where by, = P, [y0(mo —m,)] and gn = P,[7(m —m,)]. We make use of the decomposition

~

bo.y = by = Pul(h0 = 7)(mo — my)] + Pu[5(mo — m)] (A.3)

Consider the first summand on the right hand side of the previous equation. From

Assumption [6] we infer

v sup [Py[(v0 = 7)(mo — my)]| < sup [Ga[(v0 = 7)(mo — my)]|
neHn n€Hn

+v/nsup [Bo[ (o — ) (mo — my)]|

neEHn

< opy(1) + Opy (1) x v/n|mo — 7| r2(m) Sup Imy = mol r2(r,) = opy (1),
n€in

using the Cauchy-Schwarz inequality and Assumption 5| Consider the second summand on
the right hand side of (A.3). Another application of the Cauchy-Schwarz inequality and
Assumption [5] yields

P.[3(mo — )] = Pu[yo(mo — )] + op,(n~2).

Using Lemma we have P, [vo(mo — )] = op,(n~"/?) which completes the proof. [

For the exponential family, we have the conditional mean as follows:

(A oq ) (n™(x))
(¢ oq )™ (x))

E,[AY|D =0,X = z] =

1

Now the operator under consideration is T := A o ¢~ and its derivative is given by Y' =

(A" oq™1)/(¢ o q~'). We can further simplify the expression to
E,[AY[D = 0,X = z] = T'(n"(x)),
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which is used in the proofs below. We write L, as some term which is a polynomial of

(logn), whose exact value may change from line to line.

Proof of Proposition [6.1. Regarding the conditional mean function m,,, we consider the set
H = {w:we B [T (w(-) — mo()|2,m < e}, where BJ" is the set defined in (C.4)), that
contains the Gaussian process with its posterior probability going to one. The posterior
rate of contraction follows from the proof of Proposition 4.1 in|Breunig, Liu, and Yu| (2025a))
without restricting the additional A used in the prior adjustment. The Donsker property is
satisfied, following the calculation on Page 561 in the same proof from Breunig, Liu, and
Yu| (2025a), if s, > p/2.

We show the prior stability by verifying Conditions (3.18) in Proposition 1 from Ray
and van der Vaart| (2020). Recall the definition of the ball in H™ centered at the true Riesz

representer 7y, given by
H™(r,) == {h e H™ : |h — | < ry and [|h|gm < v/nr,}

for some rate r,. We need to verify Assumption , that is, there exists 7, € H™((,) for a
sequence ¢, = o(1) with \/ne,(, = o(1) where g, = n=*n/@sm+d [ throughout the analysis.
We need to consider two cases separately.

(I) If s, > s, (meaning the Riesz representer is more regular than the conditional
mean, hence it also belongs to C*([0,1]?) itself), we can simply take 7, = 7o and ¢, =
n~2|yo|mn. Because the Donsker property already enforces s,, > p/2, it is easy to see
that the condition \/ne,(, — 0 is indeed satisfied.

(IT) If s, < s, (meaning the Riesz representer is less regular than the conditional
mean), we apply Lemma with ¢, = a; %" = n=s"/@sn+P) [ 5o that |7, |z < CaP. It
is straightforward to check that |7, | < 4/n(, automatically holds if s, < s,,. Finally,
\/nenCy — 0 holds if and only if n!/?=(sx+sm)/@sm*p) [, (. The aforementioned condition
holds if s, > p/2. O

Proof of Proposition[6.9 The posterior contraction follows from the proof of Proposition
4.1 in Breunig, Liu, and Yu| (2025a), if one restricts to the control group only. Note that
~ is based on an auxiliary sample and hence we can treat 7 below as a deterministic
function denoted by =, satisfying the rate restrictions |v,lle = O(1) and |y, — Yol =
O((n/ logn) =5/ (25"+p)). Regarding the conditional mean function m,,, we consider the set
H? = {w + Ay, : (w, A) € W, }, where for some constant C' > 0:

W, = {(w, A)rwe Bl A < C’gn\/ﬁsn} N {(w, A) Y (w + M) — mol2m < 5n}, (A.4)
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where B]” is the set defined in (C.4)), that contains the Gaussian process with its posterior
probability going to one.
We first verify Assumption |5 with &, = (n/logn)~*n/(sn+P)  The posterior contraction

rate is shown in Lemma C.3 of Breunig, Liu, and Yu| (2025b). Referring to the product rate
condition, i.e., \/ne,r, = o(1) for r, ~ (n/logn)=*~/(s=+P) This is satisfied if 2s,,/(25,, +
p) + 25:/(2s, + p) > 1, which can be rewritten as /sy S, > p/2.

We now verify Assumption [6] It is sufficient to deal with the resulting empirical process
Gy,. From Lemma C.5 in Breunig, Liu, and Yu| (2025b)) we infer

Eo sup |Gy [(7m — 70) (my — mo)]| < 4ll7n — 70/ Eo Sup |Gr[my, — mo|

neEHT neHT

2.7, SUD ||my — mo|2,k
neEHn

+ |y = 0l

= (n/logn) /@ HPR, Slitp |Gy [my, — mo]| + o(1)
neHy

= o(1),

where the last equation follows from the proof of Proposition 4.1 in |Breunig, Liu, and Yu

(20254). Assumption [7] (prior stability) follows from the proof on pages 561-562 in
Liu, and Yu (2025al). O
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Supplement to “Semiparametric Bayesian

Difference-in-Differences”

Christoph Breunig Ruixuan Liu Zhengfei Yu
June 14, 2025

This supplementary appendix contains materials to support our main paper. Appendix
derives the least favorable direction for the ATT. Appendix [C] collects some auxiliary
results used for the derivations of our Bernstein-von Mises Theorems. Appendix [D]provides
details regarding the implementation. Appendix [E] presents additional simulation evidence.

In this supplement, C' > 0 denotes a generic constant, whose value might change line
by line. We introduce additional subscripts when there are multiple constant terms in the

same display.

B Least Favorable Direction

Our prior correction through the Riesz representer v, is motivated by the least favorable
direction of Bayesian submodels. As we show below, this correction is indeed sufficient for
our double-robust BvM theorem. We first provide least favorable calculations of Bayesian
submodels, which are closely linked to semiparametric efficiency derivations. Consider the

one-dimensional submodel ¢ — 17, defined by the path

my(z) = ¢ '™ + tm)(z) and  fi(2) = f(z)eT <f etf(z)f(z)dz)_ : (B.1)

for the given direction (m,f) with { f(z)dz = 0. The difficulty of estimating the parameter
7y, for the submodels depends on the direction (m,f). Among them, let &, = (£, &))
be the least favorable direction that is associated with the most difficult submodel, i.e.,
gives rise to the largest asymptotic optimal variance for estimating 7,,. Let p,, denote
the joint density of Z depending on n, := (my, f;). Taking derivative of the logarithmic

density log p,, (2) with respect to t and evaluating at ¢t = 0 gives a score operator B,, which



we derive explicitly in the following proof. The least favorable direction is defined as the
solution &, which solves the equation B,§, = T,, see (Ghosal and Van der Vaart| (2017,

p.370), where 7, is the efficient influence function for estimation of the ATT is given in

(35).

Lemma B.1. Let Assumption[]] be satisfied, then the least favorable direction for estimating
the ATT parameter in (2.3)) is:

a Tn

ity (302, 20 i )

where the Riesz representer vy, is given in (3.6).

Proof. For the submodel defined in (B.1)), the definition of the joint density p, given ({2.2)

evaluated at the perturbation 7, for the control arm yields

log pp, (y, 0, ) = log c(y) + ay(n™ + tm)(d, z) — A(q~ ' (n™ + tm))(d, x)
+ tf(z) — log ]E[etf(x)] + log f(x).

Taking derivative with respect to ¢t and evaluating at ¢ = 0 gives the score operator:

B,(m.f)(Z2) = By'm(Z) + B}§(Z), (B.2)

n

where BJ§(Z) = f(Z) and

q' (my,(X

Br'm(z) = (1-D) [aAY _ A(L(X))))] m(X),
— a(1— D) (AY — my (X)) m(X).

In the last equation, we made use of the relation (explicitly given here for continuous

outcomes):

Al(my(z)) = ¢'(my(2)) JayC(y) exp [q(my(x))ay — A(my(x))] dy
= ¢ (my(x))E,[aAY|D =0,X = z],

which follows from the exponential family assumption. In this case, there is a one-to-one
correspondence between the conditional density function and the conditional mean function

of the outcome given covariates. The efficient influence function for estimation of the ATT



parameter 7, in (3.5)) is given by 7,,(AY, D, X) = v,(D, X)(AY —m, (X)) — 7%7'77. Now the
score operator B, given in (B.2) applied to

it (302, 20 i )

a Tn

yields B, = 7,.

It remains to formally check the pathwise differentiability of the ATT (van der Vaart,
1998)), in order to justify that the influence function is indeed of the same form as obtained
by [Hahn| (1998]). This involves verifying that

0
ot

B[ (2 -y - E DI

g sy <m0} 5,(2)]

i.e., the pathwise derivative of the parameter of interest can be expressed as the inner
product of the influence function 7, and the score function S, := Bj'm, + Bj; fn- For
simplicity of notation, below we write Sg = B{; fn and S,% = B)'my,

We decompose the score function into two parts, 52 and S}], which correspond to the
score associated with the conditional density function f, (ay|p,x)(y|0,z) and the remaining

part of the likelihood. Then, we apply the chain rule to

_ ﬁ {E”h [D(AY — mm(X))] }
t=0 Ot E,,[D]

0
ot

)
t=0

with some perturbed likelihood py, .
Considering the derivatives with respect to the expectation sign on the numerator and

denominator, we have

LB DAY —my()83(2)] - A g s 2)
B [ 2@y —m()-msia)|. @

Referring to the derivative with respect to the conditional mean of the control group, it

suffices to compute

E, D%mm(X) T
[ o bl g 02,

Ty



Now one can apply the similar calculus in Example 2 of |Jonathan| (2019) to the conditional

mean to obtain

my(X) 0 m(X) 1-D
By | = —my (X)| | =By | = AY —my(X)S%Z)|. (B4
n[ T 8tmm( )t=0:| n[ T 1—7r77(X)( my(X))S5,(Z) (B.4)
The desired conclusion follows from combining the identities (B.3]) and (B.4). O

C Auxiliary Results

C.1 Useful Lemmas
C.1.1 Results on Conditional Weak Convergence

We first present a useful result from part of Theorem 1.13.1 in jvan der Vaart and Wellner
(2023) concerning conditional weak convergence. To do so, we introduce a sequence of
random variables S,,, a subfield H,, of their associated o-algebra, and a Borel probability

measure L.

Lemma C.1. The following two statements are equivalent: (i) dgp(L(S, | Hn), L) 5 o;
(i) for every t in some neighborhood of 0,

Ele!* | H,] 5 Jetde(x) < .

We now state a conditional Slutsky result, which coincides with Lemma 10 in |Yiu, Fong,

Holmes, and Rousseaul (2023)) and is included here for completeness.

Lemma C.2. Let Z™ = (Z,,...,Z,) be i.i.d. variables from a distribution Py on a Polish
sample space (Z,A). Suppose that (P,), is a sequence of random probability measures on
(R2, B(R?)) such that P, os o(Z™)-measurable for each n. Let (U,,V,) be variables each
taking values in R with (Uy,, V,)| P, ~ P, and denote the marginals by PY and PY for U,
and V,, respectively. Suppose that

dp(PY, PY) =
dpr(Py,d(y) =0,

where PY is a fized probability measure on (R, B(R)), and c is a fized constant in R. Then



we have

dpr(L(U, + V,|P,), L(U, + ¢|P,)) = 0
dBL(£<UnVn‘Pn),E(CUn’Pn)) —>P0 0.

We now state the following generalization of Lemma 1 from Ray and van der Vaart
(2020), where the function g(-) may depend on random variables beyond the covariates
X. A close inspection of their proof shows that the argument remains valid when g(-) is a
function of Z = (Y, D, X ") T.

Lemma C.3. Suppose G, is a sequence of separable classes of measurable functions, such
that

P 07

LS 0(2) ~ Eolg(2)]

n-

gegn

and there exists an envelope function G,, such that Eo[G?*°] = O(1), for some 6 > 0. Then
for every t in a sufficiently small neighborhood of 0,

sup —exp (£*Varg(9(Z2))/2)| —p, 0.

9EGn

E, [exp (tﬁ f}(Mni - 1/n)g(Zi)) ER

C.1.2 Results on Gaussian Processes

Consider a mean-zero Gaussian random element W in a separable Banach space B defined
on a probability space (Q2,U, P) and H™ its RKHS. The dual space B* of the Banach space B
consists of all continuous and linear maps b* : B — R. Define a map U by U(Sb*) = b*(W),
b* € B*. By the definition of RKHS the map SB* : H — Lo(Q2,U, P) is an isometry. Let
U:H — Ly(,U,P) be its extension to the full RKHS. If W is a mean-zero Gaussian
random element in a separable Banach space and h is an element of its RKHS, then by
the Cameron-Martin Theorem, the distributions PV *"* and PV of W + h and W on B are
equivalent with Radon-Nikodym density

dPW+h

Lo
W(W) = exp (Uh - §||hH> , almost surely. (C.1)

Regarding the uncorrected prior, we consider the Gaussian process prior W™ for the
conditional mean as Borel-measurable maps in the Banach space C([0, 1]¢), equipped with

the uniform norm | - ||5. Such a process also determines a reproducing kernel Hilbert space



(RKHS) (H™, | - |m=) and a so-called concenctration function 7", defined as, for € > 0,

inf |h|Zm — log Pr(|W™] o < €). (C.2)

heH™:|h—n7* o <€

¢n6” (e):

The posterior contraction rate €)' for such a Gaussian process prior is determined by

the solution of the equation:
Gy (1) ~ n(en)*. (C.3)

Each Gaussian process comes with an intrinsic Hilbert space determined by its covariance
kernel. This space is critical in analyzing the rate of contraction for its induced posterior.
Consider a Hilbert space H with inner product (-, )y and associated norm | - |g. H is an
Reproducing Kernel Hilbert Space (RKHS) if there exists a symmetric, positive definite
function k£ : X x X — R, called a kernel, that satisfies two properties: (i) k(-, ) € H for all
x e X and; (i) f(x) = {f,k(,x))y for all ® € X and f € H. Tt is well-known that every
kernel defines a RKHS and every RKHS admits a unique reproducing kernel.

Let Hi™ be the unit ball of the RKHS for the rescaled squared exponential process and
let B{™” be the unit ball of the Hélder class C*([0,1]?) in terms of the supremum norm
|- 0. We introduce a class of functions B])* which is shown to contain the Gaussian process

W which sufficiently large probability, and is given by
B! = ¢e,Bi™" + M,Hj", (C4)

where a, = nY/ZntP)(logn)=0+P)/Qsmtpr) o = = p7sm/Csmtp) |ogPT (), and M, =
*2@71(676%5%). For notational simplicity, we suppress the dependence of the rescaled

Gaussian process on the rescaling parameter a,,.

Lemma C.4 (Lemma 11.56 in |Ghosal and Van der Vaart| (2017))). Consider the rescaled
squared exponential process with rescaling factor a. For any s > 0 and w € C*([0, 1]P), there

exist constants Cy and Cy (depending only on w) such that

inf )2 < Coa?. (C.5)

hi|h—w|p<Cia—*
C.2 Expansions

Recall the definition of the score operator

B™m(Z) = (1 — D)(AY — m,(X))m(X).

n



The least favorable direction for the conditional mean in the control group is v,(0,z) =
_ 1 7 ()

my 1= (z)

(1 — d)v,(0,z) to signify this relationship to the control group. Given any 7™, the

. To simplify the notation in the following derivation, we also write ., (d, z) =

perturbation we consider is as follows:

n (z) == n"(x) — t7,,(0,2) /\/n.

Below we denote the conditional density function p.,(y,d,z) = f, 1d (y,0,x). From

(AY]D,X)m
the proof of Lemma [B.1] we observe

(Ao g ) (n™(x))
(@ oq ) (n™(z))

E,JAY | D=0,X = 2] =

1

Now the operator under consideration is T = A o ¢~ and its derivative is given by T’ =

(A" o qY)/(¢' o q'). For the exponential family under consideration, the first and second

order cumulants (conditional on covariates) are:
E)JAY | D=0,X =z] =Y (n"(x)), Vary(AY |D=0,X =z) =" n"(z)). (C.6)

The conditional variance formula also shows the convexity of Y(-). Related proofs can be
found page 19 in Appendix F of Breunig, Liu, and Yu| (2025b).

Lemma C.5. Let Assumptions[]] and [J hold. Then, we have uniformly for n e H,:

t t? - _
logpc,nm - logpc,nt = \/_ﬁ[fYc,O(mO - mﬂ)] + % [T(2)<7]0 )702,0] + OPo (n 3/2)'

Proof. For this purpose, we use the notation g(u) = log p.,m, for u € [0, 1]. Specifically, in

the one-parameter exponential family case, we have

10g e (v, d, 2) = (1 —d) [yn," (x) — T(n,"(x)) + log c(y)] -

By the definition of Y(-), we can obtain the first to third order derivatives of g as

! m t m
7(0) = —=7e0p" ") = —7,0p™,

\/ﬁ’Yc,Op \/ﬁ
t3

gP(0) = =2 Y™, g9(@) = =5l T (),

where @ is some intermediate value between 0 and 1. In the above calculation, we have



made use of (C.6)). O
Lemma C.6. Let Assumptions[1] and[J hold. Then, we have uniformly for n € H,:

(AY; —mo(Xi))

(™) — 6 (") :\/Lﬁ Z : ;ODi 1 i()?(riz))(z)

S(AY =m0

< (mo(Xi) — my(X3)) + or,(1).
Proof. We start with the following decomposition:

m m m m u t T
G ™) = 67 (") =tGp[ve,0p™] + VG [log pegym — log peym — i eoP °]
+ nPy[log peym — 10g peym],

where y.o(d, z) = —1=2 mo(@)

mo 1—mo(x)

in Lemma so that

and p™(Z) = AY —mg(X). Then, we apply the expansion

t m
\/ﬁGn [logpc,nm - logpc,n;“ - \/—E%,OP O]

2

t _
=tGn[Ye0(my = mo)] + 5 (Pn = Fo)[720 T (0™)] + 0p, (n7%),

uniformly in n™ € H". The second term on the right hand side vanishes because of the
Py-Glivenko-Cantelli (GC) property and the permanence GC theorem, i.e., Theorem 2.10.5
in van der Vaart and Wellner| (2023)). Then, we infer for the stochastic equicontinuity term
that

t gl
VnGnllog peym — log peny — i eoP "] = tGa[e0(my —mo)] + oy (1),
uniformly in ™ € H]". We can thus write

fT(nm) - K? (77?) = th[Vc,Opmo] + Gy, [VC,O(mO - mn)] + nPy [logpcmm - 10gp0,77,’5“] + OP0(1)>

uniformly in #™ € "' and we control nF[log pym — log pym] in the remainder of the proof.

Specifically, we apply Lemma [C.7 and obtain uniformly for n € H,,

nPy[log pe,ym — 10g ] = Po[Veo(mo — my)] + P [T (i)20] + 0r, (1)



Now using that
\/Lﬁ Z’YC,O(Di, XZ)(m[)(Xz) - mn(Xz)) = Gn[’}/go(mo — mn)] — \/ﬁPO[%p(mo — mn)]

the result follows. O

Lemma C.7. Let Assumptions[1] and[J hold. Then, we have uniformly for n € H,:

nPylog (p) — tviPleolmo — my)] + Py [YO)20] + or(1).

m
0,7715

Proof. First, we note that Py[v.0p™°] = 0 and

Py (Bpyen)” = Eo [<BZ§ (_ 1 ;OD 1 iov(rfgx))>2]

,1—D w(X) ]
T (1 —m(X))*

=F [T(2)<776n)’73,0]

using Var,(AY | D = 0,X =) = T@(y™(z)) as in (C.6). Recall the function g(u) =
log peym, for u € [0,1] in Lemma . Based on the expansion therein, and the posterior

convergence of 0™ it can be expressed as

nPog®)(0) =tEo[15(0, X)T® (55" (0, X))] + op, (1)
=t*Eo[15(0, X)(AY — mo(X))] + op, (1) = t* Po(Byve0)” + or, (1),

where the score operator Bf* = B¢ is given in the proof of Lemma . Consequently, we

obtain, uniformly for n € H,,,

nPo[log peym — 10g peym] = —n(Pyg'(0) + Pog(2)(0)) + op,(1)
= tvnPy[ye0(mo — my)] + *Po(Blyve0)? + op, (1),

which leads to the desired result. O

The next lemma is about smaller order terms in the proof of our BvM theorems. Note
that the posterior law of F;, coincides with the Bayesian bootstrap. Here, the negligibility
of those terms refers to the randomness with respect to the Bayesian bootstrap weights

(for which we use Py to highlight this dependence), conditional on the observed data.



We refer readers to Page 2891 in (Cheng and Huang| (2010) for comprehensive discussion
about disentangling the sources of randomness coming from the observed data and the
Bayesian bootstrap weights. Formally, we define A,, = op,, (1) in Py-probability, if for
any small positive € and §, it holds Py (Pyyzo (|An| > €) > §) — 0 In addition, we define
A, = Op,,(1) in Py-probability, if for any small positive J, there exists a large enough C
such that Py (Pyze(|An| > C) > 6) — 0. For the next result, recall the definition he
remainder term R, , given in the proof of Theorem by

D — m(X)

A= | (T2

) (AY —mo(X)) — D’/‘Q] (1—-v,),

where v, = E,[D]/n.
Lemma C.8. Under Assumption[3(i), it holds
(i) Sup,eyy, Bny = 0py, (1) in Py-probability and
(1t) suppep,v/n(vy, — )b, = op,, (1) in Py-probability.

Proof. The uniformity of n € H,, related to the term v, is innocuous, as the posterior law
of F}, is equivalent to the Bayesian bootstrap measure, which no longer depends on 7. That

is, we can write

E,[D] = den(y, lz) = Z M,;D;, with M,,; = 61’/2% for e; ¢ Exp(1),

i=1 1=1

conditional on the observed data Z™.

Proof of (7). Because that P, [(?::(?((j(())) (AY —my(X)) — DTO] = 0, we can write

R., =Gy [(%) (AY — mo(X)) — DTO] x (1 - %) .

By the moment condition for the envelope function in Assumption |3 (i), The first term
is Op,(1) and the second term is Op,,(1) in Py-probability. By the relationship in (71) of
Cheng and Huang| (2010), the remainder term R,, converges to zero in Pz-probability,

conditional on the data.

10



Proof of (ii). For the second part, conditional on the observed data Z™, we have

[D] + G,[D]) = Op,, (1) in P, — probability, (C.7)

where G} denotes the Bayesian bootstrap weighted analog of G,,. In addition, the definition
of the bias term by, yields

1 n
bom = - > 0(Di, Xi)[mo(X;) — my(X)] = (P — Po)[0(mo — my)],
i=1
where the second equation follows from Eo[v(D,X) | X] = 0. By the Fy-Glivenko-

Cantelli property of the conditional mean function imposed in Assumption (i), we have
SUDP,e3,, [boy| = op, (1), which, combined with (C.7), concludes the proof. O

C.3 Prior Stability of GP Priors

In this section, we verify the prior stability using standard Gaussian process priors, which
is used in the proof of Theorem [£.1] Here we follow the strategy in Section 5.3 of Ray and
van der Vaart| (2020). We first approximate 1" by an element in the RKHS H and then
apply the Cameron-Martin theorem in ; see Proposition 1.20 in (Ghosal and Van der
Vaart|, 2017)).

Lemma C.9. Under the conditions in Assumption [f}, we have

SHn J;"(n%”)dﬂ(nm)

P,
[, emomdti(y™) ° L (C.8)

Proof. Let 7, € H™((,), as stated in our Assumption [} Also, we set 1,,; = g™ — 17, /y/n.
By the Cameron-Martin theorem, the distribution II,, ; of 0, if ™ is distributed according
to the prior II has the Radon-Nikodym density

dIl,, 4
dll

(™) = exp (tUn (™) /v/n — 1|7, iz /(21)) (C.9)

where U, (-) is a centered Gaussian variable with variance |7, ||

11



By the Gaussian tail bound, we have

(™ : [Un(n™)| > My/nza|7, |an) < 2exp(—M2ne2/2). (C.10)

As a result, the posterior measure of the set in the display tends to 0 in probability for
large enough M by Lemma 4 of Ray and van der Vaart| (2020). Hence the set

B, = {0 : |Un(n™)| < My/nen |7, em} 0

also satisfies I1(B,|Z™) — 1 in probability. Considering (C.9) on the set B, and using

Assumption ], we have

dll,,

2c2
i “(n™)| <

— 0.

MIt|y/nentn +

s

By applying Lemma 3 in [Ray and van der Vaart| (2020) with A,, = B,,, & = 7 and w, a

sufficiently large fixed constant, we have

sup |6 (1) — €' (") = op, (1)

nmeBy,

By the change of variable n™ — t7, /y/n — v, we have

[, ef o dri(ym) SB ) T (™) o SBmeW(”)dHn,t(v) "
n 6O 0 — > eOP0
Vo ) Y, ) L, A

where B,; = B, — t7,//n. We can replace Il,; in the numerator by II at the
cost of anther multiplicative 1 + op,(1) term. This makes the quotient into the ratio
(B, |Z™)/TII(B,|Z™). Tt has already been proved that II(B,|Z™) = 1 — op,(1), so it is
sufficient to prove the same result for the numerator, i.e., II(B,:|Z™) = 1 — op,(1). Note
that

B, = {vivt g, /vag Ml o {o [T+ 53,/v/m) — mo(@)lar, > )
A {0 Ua (v + 3, V)] > My}

The posterior probability of the first set tends to zero in probability by assumption.

12



Considering the second term, we make use of the smoothness of the link function to get

5 1
T'(n™ + t7 Y (™ < H’ynHZFO < .
H (77 ’Yn\/ﬁ> (77 )H2,F0 \/ﬁ \/ﬁ
Therefore, the second set is contained in {n™ : |Y'(n™) — mol|2,r, > €, — C/+/n}, which has
posterior porbability op,(1).
When it comes to the third term, note that

Un(™ + 7,/ v/1) ~ N(=t [T [ /10, [T o)

if ™ is distributed according to the GP prior. Because the mean t|[,,|%./v/n of this
Gaussian variable is negligible relative to its standard deviation, we can utilize the Gaussian

tail bound to show II(|U,(n™ + t7,,/+/n)| > M+/ne, |7,

mm) is exponentially small. O

Lemma C.10. Let Assumptions[1] and[5 be satisfied. Then, we have

VP[0 — mo)] = op,(1).

Proof. The estimator m is based on an auxiliary sample and hence it is sufficient to consider

deterministic functions m,, with the same rates of convergence as m. We compute

EO[<\FZ% Di, X;) (mn — mo) (X )) |X1,...,Xn]
= - Z = mo)(X;)(ma — mo)(Xi)Eo [70(Ds, Xi)v0(Dir, X)) | Xi, Xir]
= —Z —mo)(Ds, X;)Vare(yo(Ds, X:)| X4,

using that

m(X)  1-m(X) m(X)

=0
0 o 1—7T0<X)

Eo[yo(D, X) | X] =

Now overlap as imposed in Assumption [I[iii) implies

n(X) | mX)

Vare(yo(Ds, X5)| Xi) = 2 (1 —mo(X))m3

< 1

13



Consequently, we obtain for the unconditional squared expectation that

Eo [(\/Lﬁ ;wDi,Xi)(mn - mo)(Xi)>2] < [mn — moll3 5, = o(1)

by Assumption [5] which implies the desired result. O

D Computational Details in Algorithms 1] and

Recall that the prior placed on m(z) in Algorithm (I} is a Gaussian process with mean p
used squared exponential (SE) covariance function (Rassmusen and Williams|, 2006, p.83)
K (z,2') = v?exp(— > , a} (v, — 2})?/2). In implementation, hyperparameters p, v,
Qons - - - Apy, and o2 (the variance of the noise €) are determined by maximizing the marginal
likelihood. In Algorithm [2] the adjusted prior placed on m(x) is given by K. (x,z’') =
K (z,2") +¢25(0,2) 5(0, '), cf. related constructions from Ray and Szabd| (2019), Ray and
van der Vaart| (2020), and Breunig, Liu, and Yu (2025a). The parameter ¢,, representing
the standard deviation of A, controls the weight of the prior adjustment relative to the
standard Gaussian process. The choice ¢, = vlogn./(y/n.I',) in Algorithm [2| satisfies
the rate condition in Assumption [7| with probability approaching one. It is similar to that
suggested by Ray and Szabd (2019, page 6), which is proportional to 1/(y/nT,). The factor
[',, normalizes the second term (the adjustment term) of K. to have the same scale as the
unadjusted covariance K.

We describe how Step (a) of Posterior Computation in Algorithm [2|is conducted. The
corresponding step in Algorithm [I] immediately follows by replacing the adjusted kernel
function K. by the original kernel function K. Let yo be the vector of {AY;: D; = 0},
Xy € R™*P be the matrix of data {X;: D; =0} and X € R™P be the matrix of data
{X;:i=1,---,n}. Let m,, and m, be the n.vector and n-vector of the function m(x)

evaluated at X, and X respectively:
my, = [m(X,),---,D; = 0] ,and  m,, = [m(Xy),...,m(X,)]".

For matrices X and X, we define K.(X, Xy) as a n x n. matrix whose (7, j)-th element
is K.(X;, Xoj), where X, is the i-th row of X and X, is the j-th row of X,. Analogously,
K. (Xo,Xp) is an n. x n. matrix with the (7,7)-th element being K.(Xo;, Xo;), and
K.(X,X) is a n x n matrix with the (7, j)-th element being K.(X;, X;).

Given the GP prior with mean p and covariance kernel K., the posterior of m, has

14



a Gaussian distribution with the mean m, and covariance V(m,,) specified as follows

(Rassmusen and Williams, |2006|, p.16):

i, = pl, + Ko(X, Xo) [K(Xo, Xo) + 0*L,.] " (yo — pl,),
V(m,) = KX, X) - KJ(X,Xo) [K(Xo, Xo) +0°L,.] " K] (X, X0).

We use the Matlab toolbox GPML for implementation "
For the implementation of the pilot estimator 5 given in (3.7), we recommend a Logit

regression for estimating the propensity score 7(x). As a pilot estimator m in Algorithm

s
n

follows Algorithm |1| (Posterior Computation, Step (a)). When the rescaling parameter a,,

. : . B
for posterior adjustment, we use the uncorrected posterior mean ), mf7/ B, where m

is as stated in Proposition the convergence rate of /i is Op, ((n/logn)~*m/(3sm+P)) . This
can be shown by combining Theorems 11.22; 11.55 and 8.8 from |Ghosal and Van der Vaart
(2017).

E Additional Simulation Results

This section provides additional simulation results. Section presents finite sample
results of DR Bayes under varying values of ¢, and when employing sample splitting.
Herein, we also examine the case when the propensity score has a non-negligible probability
of taking extreme values (close to one), leading to a near violation of the overlap condition.
Section presents finite-sample results for cases where the conditional distribution of

AY given (D, XT) does not belong to the natural exponential family.

E.1 Sensitivity with respect to implementation details

Tables evaluates the sensitivity of finite sample performance of DR Bayes with respect
to the variance g, that determines influence strength of the prior correction term. We set
S = ¢ x v(logne)/(y/n.I'y) with ¢, € {1/5,1/2,1,2,5}. Note that ¢, = 1 corresponds to
the simulation results of DR Bayes in Table [I, Table shows that the performance of

DR Bayes is not sensitive to the choice of c..

10The GPML toolbox can be downloaded from http://gaussianprocess.org/gpml/code/matlab/doc/.
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Table Al: The effect of ¢, on DR Bayes, normal errors.

Design ¢ n Bias CP  CIL Bias CP  CIL Bias CP CIL
p=>5 p =10 p =20

1 1/5 500 0.012 0.958 0.626 0.014 0.934 0.655 0.030 0.923 0.688

1000  0.005 0.948 0.437  -0.001 0.950 0.447  0.007 0.949 0.463

1/2° 500 0.010 0.960 0.628 0.013 0.934 0.657  0.029 0.925 0.690

1000  0.005 0.949 0.438  -0.001 0.950 0.448 0.006 0.948 0.463

1 500 0.010 0.960 0.628 0.012 0.934 0.657  0.028 0.926 0.691

1000  0.004 0.948 0.438  -0.001 0.950 0.448 0.006 0.948 0.464

2 500 0.009 0.960 0.628 0.012 0.934 0.657  0.028 0.926 0.691

1000  0.004 0.948 0.438  -0.001 0.950 0.448 0.006 0.948 0.464

5 500 0.009 0.960 0.628 0.012 0.934 0.657  0.028 0.927 0.691

1000  0.004 0.948 0.438  -0.001 0.950 0.448 0.006 0.948 0.464

II 1/5 500 0.045 0.930 0.631 0.053 0.901 0.659 0.070 0.902 0.691

1000  0.021 0.937 0.439 0.021 0.934 0.450 0.031 0.922 0.464

1/2° 500 0.036 0.929 0.635 0.045 0.903 0.664  0.064 0.908 0.696

1000  0.016 0.942 0.441 0.015 0.936 0.452 0.026 0.929 0.466

1 500 0.034 0.933 0.637 0.043 0.904 0.665 0.063 0.908 0.697

1000  0.015 0.942 0.442 0.014 0.937 0.453 0.026 0.931 0.467

2 500 0.033 0.934 0.637 0.043 0.905 0.665 0.063 0.909 0.697

1000  0.015 0.945 0.442 0.014 0.937 0.453 0.025 0.931 0.467

5 500 0.033 0.934 0.637 0.043 0.905 0.665 0.063 0.909 0.697

1000  0.014 0.945 0.442 0.014 0.937 0.453 0.025 0.931 0.467

Table reports the finite sample performance of DR Bayes using sample-split and

compare it to and compares it to the results in Tables |1| and [2| that use the full sample

twice. Sample-split uses one half of the sample to estimate 7 and m, and then draw the

posterior of the conditional mean m using the other half of the sample. The effective sample

size n, corresponds to the subsample used for drawing posteriors. As Table shows, DR

Bayes using sample-split yields similar coverage probabilities as its counterpart in Table 1

that uses the full sample twice.
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Table A2: DR Bayes using sample-split, normal errors, n,= sample size used for drawing

the posterior (half of the full sample for the sample-split approach).

Design Ne Bias Cp CIL Bias CP  CIL Bias CP  CIL
Sample-split p=>5 p =10 p =20
I 500 -0.004 0.947 0.652 -0.009 0.944 0.693  -0.026 0.921 0.786
1000 0.002 0.939 0.444  -0.008 0.954 0.463  -0.002 0.945 0.492
II 500 -0.013 0.910 0.660  -0.021 0.904 0.701 -0.051 0.889 0.789
1000 0.003 0.927 0.448  -0.011 0.937 0.467  -0.011 0.920 0.494
I11 500 0.013 0.937 0.570 0.012 0.927 0.605 0.011 0.876 0.684
1000 0.010 0.937 0.393  -0.000 0.958 0.409 0.011 0.923 0.441
v 500 0.058 0.907 0.578 0.065 0.886 0.614 0.062 0.828 0.686
1000 0.046 0.906 0.397 0.041 0.927 0.413 0.0564 0.896 0.444
Full sample p=> p=10 p=20
I 500 0.010 0.960 0.628 0.012 0.934 0.657 0.028 0.926 0.691
1000 0.004 0.948 0.438  -0.001 0.950 0.448 0.006 0.948 0.464
II 500 0.034 0.933 0.637 0.043 0.904 0.665 0.063 0.908 0.697
1000 0.015 0.942 0.442 0.014 0.937 0.453 0.026 0.931 0.467
I1I 500 0.019 0.925 0.559 0.020 0.924 0.577 0.047 0.871 0.610
1000 0.010 0.938 0.390 0.007 0.926 0.398 0.010 0.921 0.419
v 500 0.075 0.901 0.567 0.082 0.862 0.585 0.135 0.796 0.614

1000 0.045 0.891 0.393 0.049 0.882 0.402 0.064 0.859 0.423

In practice, data sometimes yield estimated propensity scores with extreme values close
to 1, bringing the overlap condition close to being violated. A common remedy is to trim
the sample based on the estimated propensity scores, discarding observations where the
scores exceed a certain threshold (Crump, Hotz, Imbens, and Mitnik, 2009)). We evaluate
the performance of our Bayesian methods in such scenarios.

To generate the data with extreme propensity scores, we generate simulated data
following Designs I and II in Section but with a larger function ¢, defined as
g(x) = X0_x;/j. As aresult, P(7(X) > 0.95) ~ 0.1 and P (7(X) > 0.99) ~ 0.01. We
discard the units whose estimated propensity score exceeds 1 — t, where ¢t = 0.05 and 0.01.
Table shows that the relative performance among various methods remains largely the
same as in Table[I] In particular, DR Bayes delivers a more stable coverage performance
than nonparametric Bayes, DR, IPW and DML , especially under Design II and/or small
trimming (¢ = 0.01).
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Table A3: Simulation results with extreme propensity scores, trimming based on the

estimated propensity score within (0,1 — ¢], n = 1000, 7 = sample size after trimming.

Design Bias CP CIL Bias CP  CIL Bias CP  CIL
I t =0.05 p=>5(n=903) p =10 (7 = 902) p =20 (7 = 885)
Bayes 0.033 0.940 0.536  0.033 0.943 0.531  0.059 0.921 0.539
DR Bayes  0.003 0.952 0.577  -0.001 0.959 0.587  0.004 0.941 0.598
DR -0.007 0.937 0.673  -0.007 0.934 0.601  -0.007 0.900 0.545
OR 0.004 0.944 0.498  -0.005 0.952 0.494  0.000 0.950 0.501
[PWHT 0.001 0.939 1.669  -0.016 0.937 1.727  -0.016 0.951 1.789
[P WHajek 0.009 0.933 0.841  -0.002 0.938 0.869  -0.001 0.934 0.877
TWFE 2.925 0.000 0.736  3.167 0.000 0.742  3.223 0.000 0.750
DML -0.014 0.961 0.776  -0.008 0.980 0.970  0.065 0.970 1.193
t =0.01 p=25 (n=989) p =10 (7 = 986) p =20 (n = 981)
Bayes 0.052 0.926 0.602  0.050 0.935 0.593  0.081 0.914 0.603
DR Bayes  0.008 0.919 0.705  0.004 0.942 0.727  0.007 0.938 0.751
DR -0.018 0.901 0.733  -0.015 0.890 0.647  -0.021 0.840 0.563
OR 0.005 0.934 0.527  -0.006 0.949 0.523  -0.001 0.947 0.531
PWHT 0.004 0.883 3.144  -0.021 0.866 3.320  -0.018 0.869 3.429
[P WHajek 0.030 0.875 1.429  0.020 0.860 1.493 0.026 0.854 1.495
TWFE 3.511 0.000 0.752  3.787 0.000 0.756  3.906 0.000 0.763
DML -0.016 0.920 1.142  0.013 0.914 1.472  0.139 0.882 1.802
II t =0.05 p=>5 p =10 p =20
Bayes 0.093 0.886 0.553  0.102 0.884 0.551  0.122 0.857 0.557
DR Bayes  0.013 0.938 0.580  0.013 0.939 0.590  0.024 0.920 0.598
DR 0.003 0.932 0.677  0.006 0.925 0.620  0.020 0.895 0.573
OR 0.359 0.581 0.801  0.359 0.290 0.568  0.349 0.338 0.575
[PWHT 0.004 0.942 1.915  -0.019 0.942 2.060 -0.012 0.951 2.212
[P W Hajek 0.012 0.930 0.946  -0.003 0.938 0.966 0.007 0.924 0.962
TWFE 2.453 0.000 0.777  2.633 0.000 0.787  2.665 0.000 0.795
DML -0.013 0.957 0.778  -0.010 0.968 0.943  0.053 0.962 1.168
t =0.01 p=>5 p =10 p =20
Bayes 0.154 0.825 0.637  0.168 0.798 0.630  0.193 0.757 0.639
DR Bayes  0.035 0.895 0.713  0.036 0.913 0.734  0.044 0.914 0.753
DR 0.016 0.898 0.739  0.033 0.881 0.672  0.050 0.822 0.598
OR 0.592 0.047 0.641  0.575 0.053 0.635  0.566 0.065 0.641
IPWHT 0.008 0.875 3.772  -0.023 0.864 4.068  -0.011 0.864 4.307
[PWHajek 0.039 0.865 1.722 0.025 0.848 1.741 0.041 0.829 1.707
TWFE 3.159 0.000 0.855  3.351 0.000 0.851  3.430 0.000 0.852
DML -0.012 0.897 1.254  0.013 0.882 1.554  0.135 0.856 1.882

18



E.2 Sensitivity with respect to error distributions

This section consider the scenarios when the error terms €;1, €;2(0) and €;5(1) in our designs
deviate from the standard normal distribution. Table[A4]presents the results for the designs
where the error terms €;1, €;2(0), and €;5(1) take y*>~distribution with 3 degrees of freedom
(normalized to have a mean of zero and unit variance). Table considers the case of
heteroskedastic errors where €(d) ~ N(0,e(x)) and e(x) = Y7 (z; — (=1)Y71)2/2p, for
d € {0,1}. In Tables and both Bayesian and frequentist methods demonstrate a
performance similar to that observed in Table [T which considers normal errors. Thus, the
results in Tables and suggest that our Bayesian methods, which assume normal
errors, can still deliver strong finite-sample performance even when the underlying error
distribution deviates from standard normality. This observation aligns with the theoretical

findings on misspecification in nonparametric Bayesian inference by Kleijn and van der
Vaart, (20006)).
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Table A4: Simulation results for designs with y?(3) errors.

Design Bias CP CIL Bias CP  CIL Bias CP  CIL
I n = 500 p=2>5 p=10 p =20
Bayes 0.026 0.940 0.613  0.051 0.927 0.630  0.067 0.908 0.645
DR Bayes  0.001 0.938 0.633  0.017 0.933 0.652  0.024 0.932 0.684
DR -0.009 0.931 0.729  -0.002 0.922 0.665 -0.001 0.897 0.616
OR -0.006 0.945 0.584  0.003 0.944 0.594  0.002 0.931 0.605
IPWHT -0.034 0.944 1.787  0.023 0.929 1.920 -0.021 0.928 2.256
[P WHajek -0.012 0.933 1.104  0.026 0.921 1.172  0.003 0.911 1.287
TWFE 2.301 0.000 1.115  2.575 0.000 1.142  2.674 0.000 1.153
DML -0.013 0.967 0.921  0.080 0.947 1.046  0.212 0.895 1.255
n = 1000 p=2> p=10 p =20
Bayes 0.008 0.946 0.428  0.018 0.940 0.434  0.036 0.939 0.444
DR Bayes  -0.005 0.948 0.435  -0.001 0.944 0.447  0.008 0.943 0.463
DR -0.011 0.948 0.524  -0.006 0.933 0.477  0.002 0.947 0.450
OR -0.008 0.940 0.413  -0.003 0.947 0.416  -0.001 0.948 0.423
IPWHT 0.008 0.930 1.199  -0.001 0.932 1.362  0.005 0.916 1.493
[P WHdjek 0.007 0.935 0.768  0.003 0.936 0.861  0.008 0.917 0.912
TWFE 2.299 0.000 0.790  2.563 0.000 0.810  2.682 0.000 0.819
DML -0.001 0.963 0.586  0.036 0.960 0.718  0.144 0.902 0.871
11 n = 500 p= p=10 p =20
Bayes 0.078 0.908 0.632  0.115 0.863 0.652  0.135 0.854 0.670
DR Bayes  0.022 0.924 0.642  0.050 0.915 0.661  0.065 0.900 0.691
DR 0.005 0.937 0.769  0.030 0.913 0.723  0.043 0.876 0.681
OR 0.248 0.725 0.712 0278 0.666 0.726  0.270 0.691 0.737
[PWHT -0.043 0.943 2.241  0.032 0.924 2.415  -0.028 0.921 2.873
[P WHajek -0.016 0.921 1.437  0.036 0.913 1.458  0.003 0.890 1.549
TWFE 2.147 0.000 1.263  2.360 0.000 1.283  2.433 0.000 1.287
DML -0.022 0.960 1.065  0.078 0.933 1.166  0.202 0.884 1.392
n = 1000 p=2> p=10 p=20
Bayes 0.040 0.927 0.440  0.057 0.923 0.448  0.079 0.896 0.459
DR Bayes  0.009 0.936 0.439  0.013 0.936 0.452  0.028 0.921 0.466
DR 0.005 0.946 0.557  0.010 0.926 0.526  0.031 0.913 0.501
OR 0.250 0.508 0.506  0.263 0.491 0.513  0.271 0.462 0.519
IPWHT 0.017 0.929 1.509  -0.002 0.934 1.737  0.008 0.917 1.926
TP WHdjek 0.015 0.925 1.003  0.003 0.932 1.094  0.012 0.904 1.128
TWFE 2.152  0.000 0.896  2.348 0.000 0.910  2.449 0.000 0.917
DML 0.003 0.946 0.651  0.032 0.947 0.793  0.138 0.893 0.970
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Table Ab: Simulation results for designs with heteroskedastic error: €;5(d) ~ N (0, h(z)),
where h(z) = > (7; — (—1)U=1)2/2p.

Design Bias CP CIL Bias CP  CIL Bias CP  CIL
I n = 500 p=>5 p=10 p =20
Bayes 0.031 0.948 0.536  0.041 0.932 0.548  0.062 0.909 0.567
DR Bayes  0.011 0.949 0.544  0.012 0.921 0.568  0.024 0.924 0.596
DR -0.011 0.936 0.677  -0.005 0.902 0.596  -0.002 0.904 0.547
OR 0.001 0.957 0.504  0.003 0.940 0.511  0.004 0.938 0.526
IPWHT 0.026 0.936 1.692  -0.020 0.928 1.964  -0.017 0.922 2.288
[PWHéjek 0.026 0.933 1.036  0.003 0.909 1.163  0.008 0.908 1.274
TWFE 2.306 0.000 1.085  2.575 0.000 1.114  2.688 0.000 1.127
DML 0.014 0.959 0.835  0.078 0.937 1.021  0.212 0.907 1.243
n = 1000 p=2> p=10 p =20
Bayes 0.016 0.948 0.373  0.015 0.939 0.378  0.029 0.940 0.387
DR Bayes  0.004 0.940 0.379  -0.000 0.934 0.388  0.006 0.943 0.400
DR -0.002 0.937 0.487  -0.005 0.933 0.432  -0.003 0.925 0.398
OR 0.003 0.951 0.357  -0.003 0.943 0.359  0.001 0.951 0.366
IPWHT -0.002 0.942 1.218 0.002 0.950 1.327 0.004 0.940 1.490
[P W Hajek 0.004 0.926 0.761  0.004 0.940 0.823  0.009 0.930 0.895
TWFE 2.309 0.000 0.770  2.574 0.000 0.789  2.693 0.000 0.801
DML 0.003 0.961 0.561  0.041 0.959 0.682  0.146 0.924 0.852
11 n = 500 p=2>5 p=10 p =20
Bayes 0.074 0.900 0.555  0.095 0.867 0.569  0.121 0.858 0.591
DR Bayes  0.034 0.923 0.552  0.041 0.899 0.576  0.060 0.892 0.602
DR 0.014 0.937 0.720  0.024 0.887 0.661  0.045 0.904 0.619
OR 0.263 0.635 0.648  0.274 0.629 0.660  0.277 0.636 0.673
PWHT 0.039 0924 2.124  -0.024 0.913 2.486  -0.018 0.919 2.916
[PWHéjek 0.039 0.924 1.360  0.005 0.900 1.468  0.014 0.897 1.540
TWFE 2.165 0.000 1.238  2.359 0.000 1.257  2.448 0.000 1.265
DML 0.015 0.940 0.964  0.072 0.908 1.152  0.203 0.892 1.380
n = 1000 p=2> p=10 p =20
Bayes 0.039 0.922 0.383  0.049 0.906 0.391  0.067 0.896 0.402
DR Bayes  0.015 0.927 0.383  0.014 0.936 0.392  0.025 0.921 0.404
DR 0.008 0.934 0.523  0.012 0.930 0.483  0.028 0.915 0.457
OR 0.256 0.418 0.462  0.265 0.375 0.467  0.274 0.376 0.475
IPWHT -0.002 0.937 1.549  0.005 0.934 1.694  0.012 0.932 1.922
[P WHdjek 0.006 0.925 1.014  0.007 0.929 1.052  0.018 0.920 1.113
TWFE 2.161 0.000 0.878  2.357 0.000 0.892  2.457 0.000 0.901
DML 0.000 0.935 0.633  0.039 0.947 0.751  0.142 0.902 0.948
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