
Simple Adaptive Estimation of
Quadratic Functionals in
Nonparametric IV Models∗

Christoph Breunig† Xiaohong Chen‡

First version: August 2018; Revised version: January 2022
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in a nonparametric instrumental variables (NPIV) model, which is an impor-

tant problem in optimal estimation of a nonlinear functional of an ill-posed

inverse regression with an unknown operator. We first show that a leave-one-

out, sieve NPIV estimator of the quadratic functional can attain a convergence

rate that coincides with the lower bound previously derived in Chen and Chris-

tensen [2018]. The minimax rate is achieved by the optimal choice of the sieve

dimension (a key tuning parameter) that depends on the smoothness of the

NPIV function and the degree of ill-posedness, both are unknown in practice.

We next propose a Lepski-type data-driven choice of the key sieve dimension

adaptive to the unknown NPIV model features. The adaptive estimator of the

quadratic functional is shown to attain the minimax optimal rate in the severely

ill-posed case and in the regular mildly ill-posed case, but up to a multiplicative√
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1. Introduction

Long before the recent popularity of instrumental variables in modern machine learn-

ing causal inference, reinforcement learning and biostatistics, the instrumental vari-

ables technique has been widely used in economics. For instance, instrumental vari-

ables regressions are frequently used to account for omitted variables, mis-measured

regressors, endogeneity in simultaneous equations and other complex situations in

economic observational data. In economics and other social sciences, as well as in

medical research, it is very difficult to estimate causal effects when treatment as-

signment is not randomized. Instrumental variables are commonly used to provide

exogenous variation that is associated with the treatment status, but not with the

outcome variable (beyond its direct effect on the treatments).

To avoid mis-specification of parametric functional forms, nonparametric instru-

mental variables (NPIV) regressions have gained popularity in econometrics and mod-

ern causal inference in statistics and machine learning. The simplest NPIV model

assumes that a random sample {(Yi, Xi,Wi)}ni=1 is drawn from an unknown joint

distribution of (Y,X,W ) satisfying

Y = h0(X) + U, E[U |W ] = 0, (1.1)

where h0 is an unknown continuous function, X is a d-dimensional vector of continuous

endogenous regressors in the sense that E[U |X] 6= 0, W is a vector of conditioning

variables (instrumental variables) such that E[U |W ] = 0. The structural function h0

can be identified as a solution to an integral equation of first kind with an unknown

operator:

E[Y |W = w] = (Th0)(w) :=

∫
h0(x)fX|W (x|w)dx,

where the conditional density fX|W (and hence the conditional expectation operator

T ) is unknown. Under mild conditions, the conditional density fX|W is continuous

and the operator T smoothes out “low regular” (or wiggly) parts of h0. This makes

the nonparametric estimation (recovery) of h0 a difficult ill-posed inverse problem

with an unknown smoothing operator T . See, for example, Newey and Powell [2003],

Hall and Horowitz [2005], Carrasco, Florens, and Renault [2007], Blundell, Chen,

and Kristensen [2007], Chen and Reiß [2011] and Darolles et al. [2011]. For a given

smoothness of h0, the difficulty of recovering h0 depends on the smoothing property

of the conditional expectation operator T . The literature distinguishes between the
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mildly and severely ill-posed regimes, and the optimal convergence rates for nonpara-

metrically estimating h0 are different in the two regimes.

This paper considers adaptive, minimax rate-optimal estimation of a quadratic

functional of h0 in the NPIV model (1.1):

f(h0) :=

∫
h2

0(x)µ(x)dx (1.2)

for a known positive, continuous weighting function µ, which is assumed to be uni-

formly bounded below from zero and from above on some subset of of the support of

X. Let ĥ be a sieve NPIV estimator of the NPIV function h0 (see e.g., Blundell et al.

[2007]). Chen and Pouzo [2015] and Chen and Christensen [2018] considered infer-

ence on a slightly more general nonlinear functional g(h0) using plug-in sieve NPIV

estimator g(ĥ). However, there is no result on any adaptive, minimax rate-optimal

estimation of any nonlinear functional g(h0) of the NPIV function h0 yet. Since a

quadratic functional is a leading example of a smooth nonlinear functional in h0,

Chen and Christensen [2018, Theorem C.1] established the minimax lower bound for

estimating a quadratic functional f(h0) in a NPIV model. They also point out that a

plug-in sieve NPIV estimator f(ĥ) of the quadratic functional f(h0) can achieve the

lower bound in the severely ill-posed regime, but fails to achieve the lower bound in

the mildly ill-posed regime. Moreover, none of the existing work considers adaptive

minimax rate-optimal estimation of the quadratic functional f(h0) in a NPIV model.

In this paper, we first propose a simple leave-one-out sieve NPIV estimator f̂J

for the quadratic functional f(h0), and establish an upper bound on its convergence

rate. By choosing the sieve dimension J optimally to balance the squared bias and

the variance parts, we show that the resulting convergence rate of f̂J−f(h0) coincides

with the lower bound of Chen and Christensen [2018, Theorem C.1]. In this sense the

estimator f̂J is minimax rate-optimal for f(h0) regardless whether the NPIV model

is severely ill-posed or mildly ill-posed. In particular, for the severely ill-posed case,

the optimal convergence rate is of the order (log n)−α, where α > 0 depends on the

smoothness of the NPIV function h0 and the degree of severe ill-posedness. For the

mildly ill-posed case, the optimal convergence rate of f̂J−f(h0) exhibits the so-called

elbow phenomena: the rate is of the parametric order n−1/2 for the regular mildly

ill-posed case, and is of the order n−β for the irregular mildly ill-posed case, where

β ∈ (0, 1/2) depends on the smoothness of h0, the dimension of X and the degree of

mild ill-posedness.

The minimax optimal estimation rate of f̂J − f(h0) is achieved by the optimal
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choice of the sieve dimension J (a key tuning parameter) that depends on the unknown

smoothness of h0 and the unknown degree of ill-posedness. We next propose a data

driven choice Ĵ of the sieve dimension based on a modified Lepski method.1 The

modification is needed to account for the estimation of the unknown degree of ill-

posedness. The adaptive, leave-one-out sieve NPIV estimator f̂Ĵ of f(h0) is shown

to attain the minimax optimal rate in the severely ill-posed case and in the regular

mildly ill-posed case, but up to a multiplicative
√

log n in the irregular mildly ill-

posed case. We note that even for adaptive estimation of a quadratic functional of a

direct regression in a Gaussian white noise model, Efromovich and Low [1996] already

shown that the extra
√

log n factor is the necessary price to pay for adaptation to the

unknown smoothness of the regression function.

Previously for the nonparametric estimation of h0 in the NPIV model (1.1),

Horowitz [2014] considers adaptive estimation of h0 in L2 norm using a model se-

lection procedure. Breunig and Johannes [2016] consider adaptive estimation of a

linear functional of the NPIV function h0 in a root-mean squared error metric us-

ing a combined model selection and Lepski method. These papers obtain adaptive

rate of convergence up to a multiplicative factor of
√

log(n) (of the minimax optimal

rate) in both severely ill-posed and mildly ill-posed cases. Chen, Christensen, and

Kankanala [2021] propose adaptive estimation of h0 in L∞ norm using a modified

Lepski method and tight random matrix inequalities to account for the estimated

measure of ill-posedness. They show that their data-driven procedure attains the

minimax optimal rate in L∞ norm and is fully adaptive to the unknown smoothness

of h0 in both severely and mildly ill-posed regimes. Our data-driven choice of the

sieve dimension is closest to that of Chen et al. [2021], which might explain why we

also obtain minimax optimal adaptivity for the quadratic functional f(h0) in both

severely and mildly ill-posed regimes.

While Horowitz [2014], Breunig and Johannes [2016] and Chen et al. [2021] use

plug-in sieve NPIV estimators in their adaptive estimation of a linear functional

of h0, we use a leave-one-out sieve NPIV estimator f̂J for the quadratic functional

f(h0) =
∫
h2

0(x)µ(x)dx. Recently Breunig and Chen [2021] propose a test statistic

that is based on a standardized leave-one-out estimator of a quadratic distance for

a null hypothesis of E[(h0(X) − hR(X))2µ(X)] = 0 in a NPIV model (for some

parametric, semiparametric or shape restricted hR). They construct an adaptive

minimax test using a random exponential scan procedure. We use the unstandardized

1See Lepski [1990], Lepski and Spokoiny [1997] and Lepski, Mammen, and Spokoiny [1997] for
detailed descriptions of the original Lepski principle.
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leave-one-out estimator f̂J in our modified Lepski procedure for adaptive minimax

estimation of f(h0) in a NPIV model. It is well-known that adaptive minimax testing

and adaptive minimax estimation are related but different (see, e.g., Giné and Nickl

[2021]). In particular, while both papers apply a tight Bernstein-type inequality for

U-statistics (Houdré and Reynaud-Bouret [2003]) in the proofs, the adaptive optimal

rates are different. For instance, the adaptive minimax L2 separation rate of testing

in Breunig and Chen [2021] is always slower than n−1/2, while our adaptive minimax

estimation for f(h0) can achieve the parametric rate of n−1/2 for regular mildly ill-

posed NPIV models.

Minimax rate-optimal estimation of a quadratic functional in density and direct

regression (in Gaussian white noise) settings has a long history in statistics. See,

for example, Bickel and Ritov [1988], Donoho and Nussbaum [1990], Fan [1991],

Efromovich and Low [1996], Laurent and Massart [2000], Cai and Low [2006], Giné

and Nickl [2008], Collier, Comminges, and Tsybakov [2017] and the references therein.

To the best of our knowledge, there are not many published papers on minimax

estimation of a quadratic functional in difficult inverse problems. See Butucea [2007],

Butucea and Meziani [2011], Chesneau [2011] and Kroll [2019] for deconvolutions and

inverse regressions in Gaussian sequence models. Moreover, Chesneau [2011] seems

the only published work on adaptive estimation of a quadratic functional in a special

deconvolution (with a known operator). Our paper is the first to propose a simple

estimator that is adaptive minimax rate-optimal for a quadratic functional in a NPIV

model, and also contributes to inverse problems with unknown operators.

The rest of the paper is organized as follows. Section 2 presents the leave-one-

out sieve NPIV estimator of the quadratic functional f(h0), and derives its optimal

convergence rates. Section 3 first presents a simple data-driven procedure of choosing

the sieve dimension using a modified Lepski method. It then establishes the optimal

convergence rates of our adaptive estimator of the quadratic functional. Section 4

provides a brief conclusion and discusses several extensions. All proofs can be found

in the Appendices A–C.

2. Minimax Optimal Quadratic Functional Estimation

This section consists of three parts. The first subsection introduces model prelimi-

naries and notation. Subsection 2.2 introduces a simple leave-one-out, sieve NPIV

estimator of the quadratic functional f(h0). Subsection 2.3 establishes the conver-

gence rate of the proposed estimator, and shows that the convergence rate coincides
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with the lower bound and hence is optimal.

2.1. Preliminaries and Notation

We first introduce notation that is used throughout the paper. For any random

vector V with support V , we let L2(V ) = {φ : V → R, ‖φ‖L2(V ) <∞} with the norm

‖φ‖L2(V ) =
√

E[φ2(V )]. If {an} and {bn} are sequences of positive numbers, we use

the notation an . bn if lim supn→∞ an/bn <∞ and an ∼ bn if an . bn and bn . an.

We consider a known positive, continuous weighting function µ, which is assumed

to be uniformly bounded below from zero and from above on some subset of X ,

denoted by Xµ. Denote L2
µ = {h : Xµ → R, ‖h‖µ < ∞} with the norm ‖h‖µ =√∫

h2(x)µ(x)dx. We consider basis functions {ψj}j≥1 to approximate the NPIV

function h0. Its orthonormalized analog with respect to ‖ · ‖µ is denoted by {ψ̃j}j≥1.

We assume that the structural function h0 belongs to the Sobolev ellipsoid

H2(p, L) =
{
h ∈ L2

µ :
∞∑
j=1

j2p/d〈h, ψ̃j〉2µ ≤ L
}
, for d/2 < p <∞, 0 < L <∞ .

Let T : L2(X) 7→ L2(W ) denote the conditional expectation operator given by

(Th)(w) = E[h(X)|W = w]. Finally let {ψ1, ..., ψJ} and {b1, ..., bK} be collections

of sieve basis functions of dimension J and K for approximating functions in L2(X)

and L2(W ), respectively. We define the sieve measure of ill-posedness which, roughly

speaking, measures how much the conditional expectation operator T smoothes out

h. Following Blundell et al. [2007] the sieve L2
µ measure of ill-posedness is

τJ = sup
h∈ΨJ ,h6=0

‖h‖µ
‖Th‖L2(W )

= sup
h∈ΨJ ,h6=0

√
f(h)

‖Th‖L2(W )

,

where ΨJ = clsp{ψ1, ..., ψJ} ⊂ L2(X) denotes the sieve spaces for the endogenous

variables. We call a NPIV model (1.1)

(i) mildly ill-posed if τj ∼ ja/d for some a > 0; and

(ii) severely ill-posed if τj ∼ exp(1
2
ja/d) for some a > 0.

2.2. A Leave-one-out, Sieve NPIV Estimator

Let {(Yi, Xi,Wi)}ni=1 denote a random sample from the NPIV model (1.1). The sieve

NPIV (or series 2SLS) estimator ĥ of h0 can be written in matrix form as follows
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(see, e.g., Chen and Christensen [2018])

ĥ(·) = ψJ(·)′[Ψ′PBΨ]−Ψ′PBY = ψJ(·)′ÂB′Y/n

where PB = B(B′B)−B′ and Y = (Y1, . . . , Yn)′,

ψJ(x) = (ψ1(x), . . . , ψJ(x))′ Ψ = (ψJ(X1), . . . , ψJ(Xn))′

bK(w) = (b1(w), . . . , bK(w))′ B = (bK(W1), . . . , bK(Wn))′

and Â = n[Ψ′PBΨ]−Ψ′B(B′B)− is an estimator of A = [S ′G−1
b S]−1S ′G−1

b , with S =

E[bK(Wi)ψ
J(Xi)

′] and Gb = E[bK(Wi)b
K(Wi)

′].

As pointed out by Chen and Christensen [2018], although one could estimate

f(h0) by the plug-in sieve NPIV estimator f(ĥ), it fails to achieve the minimax lower

bound. We propose a leave-one-out sieve NPIV estimator for the quadratic functional

f(h0) as follows:

f̂J =
2

n(n− 1)

∑
1≤i<i′≤n

Yib
K(Wi)

′Â′GµÂ b
K(Wi′)Yi′

where Gµ =
∫
ψJ(x)ψJ(x)′µ(x)dx. We will show that this simple leave-one-out esti-

mator f̂J can achieve the lower bound for estimating f(h0).

Based on many simulation results in Blundell et al. [2007] and Chen and Chris-

tensen [2018], the crucial regularization parameter in sieve NPIV estimation of h0

is the dimension J of the sieve space used to approximate unknown function h0.

In this paper, we simply let K(J) = cKJ for some constant cK ≥ 1. Further,

we let ζψ,J = supx ‖G
−1/2
µ ψJ(x)‖ and ζb,K = supw ‖G

−1/2
b bK(w)‖. For instance,

ζψ,J = O(
√
J) and ζb,K = O(

√
K) for (tensor-product) polynomial spline, wavelet

and cosine bases. Denote ζJ = max(ζψ,J , ζb,K) for K = K(J). In the rest of the paper

we restrict sieve bases to the ones such that ζJ = O(
√
J).

2.3. Rate of Convergence

We first introduce assumptions that are used to derive our rate of convergence of

the estimator f̂J . We denote the sieve Least Squares (LS) projection of h onto

ΨJ = clsp{ψ1, ..., ψJ} as ΠJh(x) = ψJ(x)′G−1
µ 〈ψJ , h〉µ. For h0 ∈ H2(p, L) we have

‖h0 − ΠJh0‖µ ≤ LJ−p/d which is used throughout this paper. This implies that√
J(log J)‖h0 − ΠJh0‖µ = o(1) as J goes to infinity (since p > d/2).
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Assumption 1. (i) T [h − h0] = 0 for any h ∈ L2
µ implies that f(h) = f(h0); (ii)

supw∈W E[Y 2|W = w] ≤ σ2
Y <∞ and E[Y 4] <∞; (iii) the densities of X and W are

Lebesgue continuous and uniformly bounded below from zero and from above on the

closed rectangular supports X ⊂ Rd and W ⊂ Rdw , respectively.

Assumption 2. τJJ
√

(log J)/n = O(1).

Below we let ΠKg(w) = bK(w)′G−1
b E[bK(W )g(W )] denote the sieve LS projection

of g ∈ L2(W ) onto BK = clsp{b1, ..., bK}.

Assumption 3. (i) suph∈ΨJ
τJ‖(ΠKT − T )h‖L2(W )/‖h‖µ ≤ vJ where vJ < 1 for all

J and vJ → 0 as J → ∞. (ii) there exists a constant C > 0 such that τJ‖T (h0 −
ΠJh0)‖L2(W ) ≤ C‖h0 − ΠJh0‖µ.

For a r × c matrix M with r ≤ c and full row rank r we let M−
l denote its left

pseudoinverse, namely (M ′M)−M ′ where ′ denotes transpose and − denotes general-

ized inverse. Below, ‖ · ‖ respectively denotes the vector `2 norm when applied to a

vector and the operator norm ‖A‖ := supx:‖x‖=1 ‖Ax‖ when applied to a matrix A.

Let (s1, . . . , sJ) denote the singular values, in non-increasing order, of G
−1/2
b SG

−1/2
µ .

In particular sJ = smin(G
−1/2
b SG

−1/2
µ ).

Assumption 4.
∥∥diag(s1, . . . , sJ)

(
G
−1/2
b SG

−1/2
µ

)−
l

∥∥ ≤ D for some constant D > 0.

Discussion of Assumptions: Assumption 1(i) ensures identification of the non-

linear functional f(h0). Assumption 2 restricts the growth of the sieve dimension

J . Assumption 3(i) is a mild condition on the approximation properties of the basis

used for the instrument space and is first imposed in Chen et al. [2021]. In fact,

‖(ΠKT −T )h‖L2(W ) = 0 for all h ∈ ΨJ when the basis functions for BK (with K ≥ J)

and ΨJ form either a Riesz basis or an eigenfunction basis for the conditional expec-

tation operator. Assumption 3(ii) is the usual L2 “stability condition” imposed in the

NPIV literature (cf. Assumption 6 in Blundell et al. [2007]). Note that Assumption

3(ii) is also automatically satisfied by Riesz bases. Assumption 4 is a modification

of the sieve measure of ill-posedness and was used by Efromovich and Koltchinskii

[2001]. Assumption 4 is also related to the extended link condition in Breunig and

Johannes [2016] to establish optimal upper bounds in the context of minimax optimal

estimation of linear functionals in NPIV models. Finally we note that by definition,

sJ satisfies

sJ = inf
h∈ΨJ ,h 6=0

‖ΠKTh‖L2(W )

‖h‖µ
≤ τ−1

J (2.1)
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for all K = K(J) ≥ J > 0. Assumption 3(i) further implies that

sJ ≥ inf
h∈ΨJ ,h6=0

‖Th‖L2(W )

‖h‖µ
− sup

h∈ΨJ ,h6=0

‖(ΠKT − T )h‖L2(W )

‖h‖µ
= cττ

−1
J , (2.2)

for some constant cτ > 0. We shall maintain Assumption 3(i) and use the equivalence

of sJ and τ−1
J in the paper.

The next result provides an upper bound on the rate of convergence for the esti-

mator f̂J .

Theorem 2.1. Let Assumptions 1–3 hold. Then:

f̂J−f(h0) = Op

(
τ 2
J

√
J

n
+

∥∥〈h0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥+ τJ‖h0 − ΠJh0‖µ√
n

− ‖h0 − ΠJh0‖2
µ

)
.

(2.3)

If in addition h0 ∈ H2(p, L) and Assumption 4 holds, then:

1. Mildly ill-posed case: choosing J ∼ n2d/(4(p+a)+d) implies

f̂J − f(h0) =

{
Op

(
n−4p/(4(p+a)+d)

)
, if p ≤ a+ d/4,

Op

(
n−1/2

)
, if p > a+ d/4.

(2.4)

2. Severely ill-posed case: choosing

J ∼
(

log n− 4p+ d

2a
log log n

)d/a
implies

f̂J − f(h0) = Op

(
(log n)−2p/a

)
. (2.5)

Theorem 2.1 presents an upper bound on the convergence rates of f̂J to f(h0).

When the sieve dimension J is chosen optimally, the convergence rate (2.4) coincides

with the minimax lower bound in Chen and Christensen [2018, Theorem C.1] for the

mildly ill-posed case, while the convergence rate (2.5) coincides with the minimax

lower bound in Chen and Christensen [2018, Theorem C.1] for the severely ill-posed

case. Moreover, within the mildly ill-posed case, depending on the smoothness of h0

relatively to the dimension of X and the degree of mildly ill-posedness a, either the

first or the second variance term in (2.3) dominates, which leads to the so-called elbow
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phenomenon: the regular case with a parametric rate of n−1/2 when p > a+ d/4; and

the irregular case with a nonparametric rate when p ≤ a+d/4. In particular, Theorem

2.1 shows that the simple leave-one-out estimator f̂J is minimax rate optimal provided

that the sieve dimension J is chosen optimally.

Chen and Christensen [2018, Theorem C.1] actually established lower bound for

estimating a quadratic functional of a derivative of h0 in a NPIV model as well. Using

Fourier, spline and wavelet bases, we can easily show that our simple leave-one-out,

sieve NPIV estimator of the quadratic functional of a derivative of h0 also achieve the

lower bound, and hence is minimax rate-optimal. We do not present such a result

here since it is a very minor extension of Theorem 2.1.

3. Rate Adaptive Estimation

The minimax rate of convergence depends on the optimal choice of sieve dimension J ,

which depends on the unknown smoothness p of the true NPIV function h0 and the

unknown degree of ill-posedness. In this section we propose a data-driven choice of

the sieve dimension J based on a modified Lepski method; see Lepski [1990], Lepski

and Spokoiny [1997] and Lepski et al. [1997] for early development of this popular

method.

In this section we follow Chen et al. [2021] and let ΨJ be a tensor-product Cohen-

Daubechies-Vial (CDV) wavelet (see, e.g., chapter 4.3.5 of Giné and Nickl [2021]) or

dyadic B-spline sieve (see, e.g., Appendix A.1 of Chen et al. [2021]) for H2(p, L). Let

T denote the set of possible sieve dimensions J . For example for (order r) B-splines,

T = {J = (2l + r − 1)d : l ∈ N ∪ {0}}. Since f̂J is based on a sieve NPIV estimator,

we can simply use a random index set Î that is proposed in Chen et al. [2021] for

their sup-norm rate adaptive sieve NPIV estimation of h0:

Î = {J ∈ T : 0.1(log Ĵmax)2 ≤ J ≤ Ĵmax},

where

Ĵmax = min
{
J ∈ T : ŝ−1

J J
√

log J ≤ 10
√
n < ŝ−1

J+J
+
√

log J+
}
, (3.1)

ŝJ is the smallest singular value of (B′B/n)−1/2(B′Ψ/n)G
−1/2
µ , and J+ = min{j ∈

T : j > J}.
We define our data driven choice Ĵ of “optimal” sieve dimension for estimating
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f(h0) as follows:

Ĵ = min
{
J ∈ Î : |f̂J − f̂J ′| ≤ c0(V̂ (J)+ V̂ (J ′)) for all J ′ ∈ Î with J ′ > J

}
(3.2)

for some constant c0 > 0 and

V̂ (J) =

√
J(log n)

n ŝ2
J

∨ 1√
n
, (3.3)

where a∨b := max{a, b}. The random index set Î is used to compute our data driven

choice (3.2) since the unknown measure of ill-posedness τJ is estimated by ŝ−1
J .

We introduce a non-random index set I = {J ∈ T : J ≤ J}, where J =

sup
{
J ∈ T : τJJ

√
(log J)/n ≤ c̄

}
for some sufficiently large constant c̄ > 0. Let

B = {h ∈ L2
µ : ‖h‖∞ ≤ L} and p > p ≥ 3d/4. The following assumption strengthens

some conditions imposed in the previous section.

Assumption 5. (i) suph∈H2(p,L)∩B ‖h − ΠJh‖µ ≤ cJ−p/d for some finite constant

c > 0 for all p ∈ [p, p], with ΨJ being CDV wavelet or dyadic B-spline basis; (ii)

supw∈W E[Y 4|W = w] ≤ σ4
Y <∞; (iii) Assumptions 3(ii) and 4 hold for all J ∈ I.

The next result establishes an upper bound for the adaptive estimator f̂Ĵ .

Theorem 3.1. Let Assumptions 1(i)(iii), 3(i), and 5 hold. Then, we have in the

1. mildly ill-posed case:

sup
p∈[p,p]

sup
h0∈H2(p,L)∩B

Ph0
(∣∣f̂Ĵ − f(h0)

∣∣ > C1rn

)
= o(1) (3.4)

for some constant C1 > 0 and where

rn =

{ (√
log n/n

)4p/(4(p+a)+d)
, if p ≤ a+ d/4,

n−1/2, if p > a+ d/4.

2. severely ill-posed case:

sup
p∈[p,p]

sup
h0∈H2(p,L)∩B

Ph0
(∣∣f̂Ĵ − f(h0)

∣∣ > C2(log n)−2p/a
)

= o(1) (3.5)

for some constant C2 > 0.

Theorem 3.1 shows that our data-driven choice of the key sieve dimension can

lead to fully adaptive rate-optimal estimation of f(h0) for both the severely ill-posed
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case and the regular mildly ill-posed case, while it has to pay a price of an extra
√

log n factor for the irregular mildly ill-posed case (i.e., when p ≤ a + d/4). We

note that when a = 0 in the mildly ill-posed case, the NPIV model (1.1) becomes

the regression model with X = W . Thus our result is in agreement with the theory

in Efromovich and Low [1996], which showed that one must pay a factor of
√

log n

penalty in adaptive estimation of a quadratic functional in a Gaussian white noise

model when p ≤ d/4.

In adaptive estimation of a nonparametric regression function E[Y |X = ·] = h(·),
it is known that Lepski method has the tendency of choosing small sieve dimension,

and hence may not perform well in empirical work. We wish to point out that due to

the ill-posedness of the NPIV model (1.1), the optimal sieve dimension for estimating

f(h0) is smaller than the optimal sieve dimension for estimating f(E[Y |X = ·]).
Therefore, we suspect that our simple adaptive estimator of a quadratic functional of

a NPIV function will perform well in finite samples.

4. Conclusion and Extensions

In this paper we first show that a simple leave-one-out sieve NPIV estimator of the

quadratic functional f(h0) is minimax rate optimal. We then propose an adaptive

leave-one-out sieve NPIV estimator of the f(h0) based on a modified Lepski method to

account for the unknown degree of ill-posedness. We show that the adaptive estimator

achieves the minimax optimal rate for the severely ill-posed case and for the regular

mildly ill-posed case, while a multiplicative
√

log n term is the price to pay for the

irregular mildly ill-posed NPIV problem.

Like all existing work using Lepski method, implementation of our data-driven

choice relies on a calibration constant. To improve finite sample performance over

the original Lepski method, Spokoiny and Vial [2009] suggest a propagation approach,

Chernozhukov, Chetverikov, and Kato [2014] and Spokoiny and Willrich [2019] pro-

pose bootstrap calibrations in kernel density estimation and in linear regressions with

Gaussian errors respectively. Chen et al. [2021] propose a bootstrap implementation of

a modified Lepski method in their minimax adaptive sup-norm estimation in a NPIV

model, and show its good performance in finite samples. Their bootstrap implemen-

tation can be easily extended to calibrate the constant in our adaptive estimation of

the quadratic functional in a NPIV model. We leave this to future refinement.

Our results can be extended in several directions. First, we can relax the Sobolev

ball assumption imposed on h0 in the NPIV model. We can let the NPIV function

12



h0 belong to a bump algebra space. The result by Collier et al. [2017] on minimax

estimation of a quadratic functional under sparsity constraints can be useful for this

extension. Second, we focus on adaptive estimation of a quadratic functional of

the NPIV function h0 in this paper. There are works on minimax-rate estimation

and adaptive estimation for more general smooth nonlinear functionals of densities

and of nonparametric regressions; see, e.g., Birgé and Massart [1995], Liu, Mukherjee,

Robins, and Tchetgen [2021] and the references therein. We can combine our approach

here with those in the literature for extensions to other smooth nonlinear functionals of

the NPIV function h0. Such an extension will allow for adaptive minimax estimation

of nonlinear policy functionals in economics and modern causal inference.

A. Proofs of Results in Section 2

Recall the 2SLS projection of h onto ΨJ is given by:

QJh(x) = ψJ(x)′[S ′G−1
b S]−1S ′G−1

b E[bK(J)(W )h(X)] = ψJ(x)′AE[bK(J)(W )h(X)].

For a r × c matrix M with r ≤ c and full row rank r we let M−
l denote its left

pseudoinverse, namely (M ′M)−M ′. Let ψ̃J = G
−1/2
µ ψJ and b̃K = G

−1/2
b bK . Thus, we

have AG
1/2
b = (G

−1/2
b S)−l and

G1/2
µ AG

1/2
b = (G

−1/2
b SG−1/2

µ )−l .

In particular, we can write

QJh(x) = ψJ(x)′(G
−1/2
b S)−l E[̃bK(J)(W )h(X)]

= ψ̃J(x)′(G
−1/2
b SG−1/2

µ )−l E[̃bK(J)(W )h(X)].

The minimal or maximal eigenvalue of a quadratic matrix M is denoted by

λmin(M) or λmax(M). Recall that

f̂J =
1

n(n− 1)

∑
i 6=i′

YiYi′b
K(Wi)

′Â′GµÂ b
K(Wi′).

13



Proof of Theorem 2.1. Proof of Result (2.3). Note that

f(QJh0) =

∫ (
ψJ(x)′(G

−1/2
b S)−l E[̃bK(W )h0(X)]

)2

µ(x)dx

=
∥∥G1/2

µ (G
−1/2
b S)−l E[̃bK(W )h0(X)]

∥∥2
= ‖E[V J ]‖2

using the notation V J
i = YiG

1/2
µ AbK(Wi). Thus, the definition of the estimator f̂J

implies

f̂J − f(QJh0) =
1

n(n− 1)

J∑
j=1

∑
i 6=i′

(
VijVi′j − E[V1j]

2
)

(A.1)

+
1

n(n− 1)

∑
i 6=i′

YiYi′b
K(Wi)

′
(
A′GµA− Â′GµÂ

)
bK(Wi′), (A.2)

where we bound both summands on the right hand side separately in the following.

Consider the summand in (A.1), we observe

E
∣∣∣ J∑
j=1

∑
i 6=i′

(
VijVi′j − E[V1j]

2
)∣∣∣2

= 2n(n− 1)(n− 2)
J∑

j,j′=1

E
[(
V1jV2j − E[V1j]

2
)(
V3j′V2j′ − E[V1j′ ]

2
)]

︸ ︷︷ ︸
I

+ n(n− 1)
J∑

j,j′=1

E
[(
V1jV2j − E[V1j]

2
)(
V1j′V2j′ − E[V1j′ ]

2
)]

︸ ︷︷ ︸
II

.

By Assumption 1(ii) it holds supw∈W E[Y 2|W = w] ≤ σ2
Y , which together with Bre-

unig and Chen [2021, Lemma E.7] implies λmax

(
Var(Y b̃K(W )

)
≤ σ2

Y . To bound the

summand I we observe that

I =
J∑

j,j′=1

E[V1j]E[V1j′ ]Cov(V1j, V1j′) = E[V J
1 ]′Cov(V J

1 , V
J

1 )E[V J
1 ]

≤ λmax

(
Var(Y b̃K(W ))

)∥∥(G
−1/2
b SG−1/2

µ )−l E[V J
1 ]
∥∥2

= σ2
Y

∥∥∥〈QJh0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥∥2
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by using the notation V J
i = Yi(G

−1/2
b SG

−1/2
µ )−l b̃

K(Wi). Consider II. We observe

II = n(n− 1)
J∑

j,j′=1

E[V1jV1j′ ]
2 − n(n− 1)

( J∑
j=1

E[V1j]
2
)2

≤ n(n− 1)
J∑

j,j′=1

E[V1jV1j′ ]
2 ≤ 2σ2

Y n(n− 1)s−4
J J

where the last inequality stems from Breunig and Chen [2021, Lemma E.1] together

with supw∈W E[Y 2|W = w] ≤ σ2
Y . Consequently, we obtain

E
∣∣∣ 1

n(n− 1)

J∑
j=1

∑
i 6=i′

(
VijVi′j−E[V1j]

2
)∣∣∣2 ≤ 4σ4

Y

(
1

n

∥∥〈QJh0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥2
+

J

n2s4
J

)
.

(A.3)

The second summand in (A.2) can be bounded following the same proof as that of

Breunig and Chen [2021, Lemma E.4] (replacing their (Yi − h0(Xi)) with our Yi and

our Assumption 1(ii)), which yields

f̂J − f(QJh0) = Op

(
1√
n

∥∥〈QJh0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥+

√
J

ns2
J

)
.

Next, by the definition ofQJ we have: 〈QJh0, ψ̃
J〉µ = (G

−1/2
b SG

−1/2
µ )−l E[̃bK(J)(W )h0(X)].

Thus, we have

∥∥〈QJh0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥ ≤ ∥∥〈h0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥
+ s−2

J

∥∥E[̃bK(J)(W )(h0(X)− ΠJh0(X))]
∥∥,

By inequality (2.2) and Assumption 3(ii), we have

s−2
J

∥∥E[̃bK(J)(W )(h0(X)− ΠJh0(X))]
∥∥ = O

(
τ 2
J‖ΠKT (h0 − ΠJh0)‖L2(W )

)
= O

(
τJ‖h0 − ΠJh0‖µ

)
.

It remains to evaluate

f(QJh0)− f(h0) = ‖QJh0‖2
µ −

[
‖ΠJh0‖2

µ + ‖h0 − ΠJh0‖2
µ

]
.

Consider the first summand on the right hand side. There exist unitary matrices M1,
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M2 with ḃK := M1b̃
K and ψ̇J := M2ψ̃

J such that E[ḃK(J)(W )ψ̇J(X)′] has an upper

J × J matrix diag(s1, . . . , sJ) and is zero otherwise. We thus derive

‖QJh0‖2
µ =

∥∥∥(G
−1/2
b SG−1/2

µ )−l E[̃bK(J)(W )h0(X)]
∥∥∥2

=
J∑
j=1

s−2
j E[ḃj(W )h0(X)]2 =

J∑
j=1

〈h0, ψ̇j〉2µ = ‖ΠJh0‖2
µ,

and hence f(QJh0) − f(h0) = −‖h0 − ΠJh0‖2
µ. This completes the proof of Result

(2.3).

For the proofs of Results (2.4) and (2.5), we note that h0 ∈ H2(p, L) implies

‖h0 − ΠJh0‖µ ≤ LJ−p/d.

Moreover, by inequality (2.2) and Assumption 4 we have:

∥∥〈h0, ψ
J〉′µ(G

−1/2
b S)−l

∥∥ =
∥∥〈h0, ψ̃

J〉′µ(G
−1/2
b S ′G−1/2

µ )−l
∥∥ ≤ Dc−1

τ

√√√√ J∑
j=1

τ 2
j 〈h0, ψ̃j〉2µ.

These bounds are used below to derive the concrete rates of convergence in the mildly

and severely ill-posed regimes.

Proof of Result (2.4) for the mildly ill-posed case. The choice of J ∼ n2d/(4(p+a)+d)

implies

n−2τ 4
JJ ∼ n−2J1+4a/d ∼ n−8p/(4(p+a)+d)

and for the bias term J−4p/d ∼ n−8p/(4(p+a)+d). We now distinguish between the two

regularity cases of the result. First, consider the case p ≤ a+d/4, where the mapping

j 7→ j2(a−p)/d+1/2 is increasing and consequently, we observe

n−1

J∑
j=1

〈h0, ψ̃j〉2µ τ 2
j ∼ n−1

J∑
j=1

〈h0, ψ̃j〉2µ j2p/d−1/2j2(a−p)/d+1/2

. n−1J2(a−p)/d+1/2 ∼ n−8p/(4(p+a)+d).

Moreover, we obtain

n−1τ 2
JJ
−2p/d ∼ n−1J2(a−p)/d . n−8p/(4(p+a)+d).
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Finally, it remains to consider the case p > a+ d/4. In this case, we have that

J∑
j=1

〈h0, ψ̃j〉2µ τ 2
J .

J∑
j=1

〈h0, ψ̃j〉2µj2p/d = O(1)

and consequently, the second variance term satisfies n−1
∥∥〈QJh0, ψ

J〉µ(G
−1/2
b S)−l

∥∥2
=

O(n−1) which is the dominating rate and thus, completes the proof of the result.

Proof of Result (2.5) for the severely ill-posed case. The choice of

J ∼
(

log n− 4p+ d

2a
log log n

)d/a
implies

n−2τ 4
JJ ∼ n−2J exp(2Ja/d) ∼

(
log n− 4p+ d

2a
log log n

)d/a
(log n)−(4p+d)/a ∼ (log n)−4p/a.

We further analyze for the bias part

J−4p/d ∼
(

log n− 4p+ d

2a
log log n

)−4p/a

∼ (log n)−4p/a.

Moreover, since the mapping j 7→ j−2p/d exp(ja/d) is increasing we obtain

n−1

J∑
j=1

〈h0, ψ̃j〉2µ τ 2
j ∼ n−1

J∑
j=1

〈h0, ψ̃j〉2µj2p/dj−2p/d exp(ja/d)

. n−1 exp(Ja/d)J−2p/d ∼ (log n)−2p/a (log n)−(2p+d)/a . (log n)−4p/a

and finally

n−1τ 2
JJ
−2p/d ∼ n−1 exp(Ja/d)J−2p/d . (log n)−4p/a,

which shows the result.
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B. Proofs of Results in Section 3

We denote H =
⋃
p∈[p,p]H2(p, L) ∩ B and recall that B = B(L) = {h : ‖h‖∞ < L}.

Below, we make use of the notation

Ĵ =
{
J ∈ Î : |f̂J − f̂J ′ | ≤ c0(V̂ (J) + V̂ (J ′)) for all J ′ ∈ Î with J ′ > J

}
and recall the definition Î = {J ∈ T : 0.1(log Ĵmax)2 ≤ J ≤ Ĵmax}. We denote

J(c) = sup{J ∈ T : τJJ
√

(log J)/n ≤ c}

for some constant c > 0. The oracle choice of the dimension parameter is given by

J0 = J0(p, c0) = sup
{
J ∈ T : V (J) ≤ c0J

−2p/d
}
, V (J) = τ 2

J

√
J(log n)

n
∨ 1√

n
(B.1)

for some constant c0 > 0. We introduce the set

E∗n = {J0 ∈ Ĵ } ∩ {|ŝJ − sJ | ≤ ηsJ for all J ∈ I}

for some η ∈ (0, 1).

Proof of Theorem 3.1. Proof of Result (3.4) for the mildly ill-posed case. Due

to Chen et al. [2021, Lemma B.5] we have J(c1) ≤ Ĵmax ≤ J(c2) for some constants

c1, c2 > 0 on E∗n. The definition Ĵ = minJ∈Ĵ J implies Ĵ ≤ J0 on the set E∗n and

hence, we obtain

∣∣f̂Ĵ − f(h0)
∣∣1E∗n ≤ ∣∣f̂Ĵ − f̂J0∣∣1E∗n +|f̂J0 − f(h0)|1E∗n

≤ c0

(
V̂ (Ĵ) + V̂ (J0)

)
1E∗n +|f̂J0 − f(h0)|.

On the set E∗n, we have |ŝJ − sJ | ≤ ηsJ , for some η ∈ (0, 1), which implies ŝ−2
J ≤

s−2
J (1− η)−2 and thus, by the definition of V̂ (·) in (3.3) we have

∣∣f̂Ĵ−f(h0)
∣∣1E∗n ≤ c0(1−η)−2

((
s−2

Ĵ

√
Ĵ+s−2

J0

√
J0

)
1E∗n

√
log n

n

)
∨ 1√

n
+|f̂J0−f(h0)|.

Using inequality (2.2) together with Assumption 3(i) yields s−2
J ≤ cττ

2
J for all J , see
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inequality (2.2). Consequently, from the definition of V (·) in (B.1) we infer:

∣∣f̂Ĵ − f(h0)
∣∣1E∗n ≤ c0 cτ

(1− η)2

((
τ 2
Ĵ

√
Ĵ + τ 2

J0

√
J0

)
1E∗n

√
log n

n

)
∨ 1√

n
+ |f̂J0 − f(h0)|

≤ c0 cτ
(1− η)2

(
V (Ĵ) + V (J0)

)
1E∗n +|f̂J0 − f(h0)|

≤ 2c0 cτ
(1− η)2

V (J0) + |f̂J0 − f(h0)|

for n sufficiently large, where the last inequality is due to V (Ĵ)1E∗n ≤ V (J0) since

Ĵ ≤ J0 on E∗n. By Lemmas C.3 and C.7 it holds P(E∗n) = 1 + o(1).

The definition of the oracle choice in (B.1) implies J0 ∼ (n/
√

log n)2d/(4(p+a)+d) in

the mildly ill-posed case. Thus, we obtain

n−2(log n)τ 4
J0
J0 ∼ n−2(log n)J

1+4a/d
0 ∼ (

√
log n/n)8p/(4(p+a)+d)

which coincides with the rate for the bias term. We now distinguish between the two

cases in the mildly ill-posed case. First, consider the case p ≤ a + d/4. In this case,

the mapping j 7→ j2(a−p)/d+1/2 is increasing in j and consequently, we observe

n−1

J0∑
j=1

τ 2
j 〈h0, ψ̃j〉2µ . J

2(a−p)/d+1/2
0 n−1 . (

√
log n/n)8p/(4(p+a)+d).

Moreover, using h0 ∈ H2(p, L), i.e.,
∑

j≥1〈h0, ψ̃j〉2µj2p/d ≤ L, we obtain

n−1τ 2
J0

∑
j>J0

〈h0, ψ̃j〉2µ . (
√

log n/n)8p/(4(p+a)+d).

Finally, it remains to consider the case p > a+d/4, where as in the proof of Theorem

2.1 we have
∑J0

j=1 τ
2
j 〈h0, ψ̃j〉2µ = O(1), implying n−1

∥∥〈QJ0h0, ψ
J0〉µ(G

−1/2
b S)−l

∥∥2
=

O(n−1) which is the dominating rate and thus, completes the proof for the mildly

ill-posed case.

Proof of Result (3.5) for the severely ill-posed case. We have

∣∣f̂Ĵ − f(h0)
∣∣1E∗n ≤ ∣∣f̂Ĵ − f(QĴh0)

∣∣1E∗n + max
J(c1)≤J≤J(c2)

|f(QJh0 − h0)|1E∗n

≤ 2σ2
Y

(
s−2

J(c2)

√
J(c2) log J(c2)

n− 1
+
‖〈QJ(c2)h0, ψ

J(c2)〉′µ(G
−1/2
b S)−l ‖√

n

)
+
(
J(c1)

)−2p/d

19



with probability approaching one by Lemma C.5. From Chen et al. [2021, Lemma

B.2] it holds, in the severely ill-posed case, J+
0 = inf{J ∈ T : J > J0} ≥ J(c1) for all

n sufficiently large and thus, by the definition of J(·) we have

∣∣f̂Ĵ − f(h0)
∣∣1E∗n ≤ (2σ2

Y + 1)
(
CJ(c2)

)−2p/d

with probability approaching one, using that J(c1) ≥ CJ(c2) for some constant C > 0.

From the definition of J(·) we have (c log n)d/a ≤ J(c2) for any c ∈ (0, 1) and n

sufficiently large. This implies

∣∣f̂Ĵ − f(h0)
∣∣1E∗n = Op

(
(log n)−2p/a

)
,

which completes the proof.

C. Supplementary Lemmas

We first introduce additional notation. First we consider a U-statistic

Un,1 =
2

n(n− 1)

∑
i<i′

R1(Zi, Zi′)

where Zi = (Yi,Wi) and the kernel R1 is given by

R1(Zi, Zi′) = Yi 1Mi
bK(J)(Wi)

′A′GµAb
K(J)(Wi′)Yi′ 1Mi′

− E[Yi 1Mi
bK(J)(Wi)]

′A′GµAE[bK(J)(Wi′)Yi′ 1Mi′
] (C.1)

where Mi = {|Yi| ≤ Mn} with Mn = J−1/4
√
n/(log J). Note that the kernel R1 is

a symmetric function such that E[R1(Zi, z)] = 0 for all z. We also introduce the

U-statistic

Un,2 =
2

n(n− 1)

∑
i<i′

R2(Zi, Zi′)

where the kernel R2 is given by

R2(Zi, Zi′) = Yib
K(J)(Wi)

′A′GµAb
K(J)(Wi′)Yi′ 1Mc

i ∪Mc
i′

− E
[
Yib

K(J)(Wi)
′A′GµAb

K(J)(Wi′)Yi′ 1Mc
i ∪Mc

i′

]
.

We make use of the following exponential inequality established by Houdré and
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Reynaud-Bouret [2003].

Lemma C.1 (Houdré and Reynaud-Bouret [2003]). Let Un be a degenerate U-statistic

of order 2 with kernel R based on a simple random sample Z1, . . . , Zn. Then there

exists a generic constant C > 0, such that

P

(∣∣∣ ∑
1≤i<i′≤n

R(Zi, Zi′)
∣∣∣ ≥ C

(
Λ1

√
u+ Λ2u+ Λ3u

3/2 + Λ4u
2
))
≤ 6 exp(−u)

where

Λ2
1 =

n(n− 1)

2
E[R2(Z1, Z2)],

Λ2 = n sup
‖ν‖L2(Z)≤1,‖κ‖L2(Z)≤1

E[R(Z1, Z2)ν(Z1)κ(Z2)],

Λ3 =
√
n sup

z
|E[R2(Z1, z)]|,

Λ4 = sup
z1,z2

|R(z1, z2)|.

The next result provides upper bounds for the estimates Λ1,Λ2,Λ3,Λ4 when the

kernel R coincides with R1 given in (C.1).

Lemma C.2. Let Assumption 1(ii) be satisfied. Given kernel R = R1, it holds:

Λ2
1 ≤

σ4
Y n(n− 1)

2
Js−4

J (C.2)

Λ2 ≤ 2σ2
Y n s

−2
J (C.3)

Λ3 ≤ σ2
YMn

√
n cKJs

−2
J (C.4)

Λ4 ≤ cKM
2
nJs

−2
J . (C.5)

Proof. The result follows from the proofs of Lemma E.1 and Lemma F.2 of Breunig

and Chen [2021] using Assumption 1(ii).

Lemma C.3. Let Assumption 1(iii) hold and ΨJ be CDV wavelet or dyadic B-spline

basis. Then, for any constant η ∈ (0, 1) we have

P
(

sup
J∈I

s−1
J |ŝJ − sJ | ≤ η

)
→ 1.

Proof. The result is due to the proof of Lemma C.7 of Chen et al. [2021].
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Lemma C.4. Let Assumptions 1(iii) and 3(i) hold and ΨJ be CDV wavelet or dyadic

B-spline basis. Then, for any constants c1, c2 > 0 we have

P
(
J(c1) ≤ Ĵmax ≤ J(c2)

)
→ 1.

Proof. The result is due to Chen et al. [2021, Lemma B.5].

Below, for simplicity of notation, we denote J := J(c) for some constant c > 0

and we make use of the notation

cn(J) := 2σ2
Y s
−2
J

√
J log J

n− 1
+ ‖〈QJh0, ψ

J〉′µ(G
−1/2
b S)−l ‖/

√
n

Lemma C.5. Let Assumptions 1(i)(iii), 3(i), and 5 be satisfied. Then, we have

inf
h0∈H

Ph0
(∣∣f̂J − f(QJh0)

∣∣ ≤ cn(J) ∀J ∈ I
)
→ 1. (C.6)

Proof. First, observe that by making use of Assumption 5 it holds cn(J) = o(1)

uniformly in J ∈ I. We make use of the decomposition

f̂J − f(QJh0)

=
2

n(n− 1)

∑
i<i′

(
Yib

K(J)(Wi)− E[Y bK(J)(W )]
)′
A′GµA

(
Yi′b

K(J)(Wi′)− E[Y bK(J)(W )]
)

+
4

n

∑
i

E[Y bK(J)(W )]′A′GµA
(
Yib

K(J)(Wi)− E[Y bK(J)(W )]
)

+
2

n(n− 1)

∑
i<i′

YiYi′b
K(J)(Wi)

′(A′GµA− Â′GµÂ
)
bK(J)(Wi′).

Using the U-statistic notation introduced at the beginning of this section we obtain

Ph0
(

max
J∈I

{
cn(J)−1

∣∣f̂J − f(QJh0)
∣∣} > 1

)
≤ P

(
max
J∈I

{
cn(J)−1

∣∣Un,1(J)
∣∣} > 1

4

)
+ Ph0

(
max
J∈I

{
cn(J)−1

∣∣Un,2(J)
∣∣} > 1

4

)
+ Ph0

(
max
J∈I

{
cn(J)−1

∣∣ 4
n

∑
i

E[Y bK(J)(W )]′A′GµA
(
Yib

K(J)(Wi)− E[Y bK(J)(W )]
)∣∣} > 1

4

)

+ Ph0

(
max
J∈I

{
cn(J)−1

∣∣ 2

n(n− 1)

∑
i<i′

YiYi′b
K(J)(Wi)

′(A′GµA− Â′GµÂ
)
bK(J)(Wi′)

∣∣} > 1

4

)
=: T1 + T2 + T3 + T4.
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Consider T1. We make use of U-statistics deviation results. To do so, consider

Λ1, . . . ,Λ4 as given in Lemma C.1. From Lemma C.2 we infer with u = 2 log J and

Mn = J−1/4
√
n/(log J) that for all J ≤ J we have

Λ1

√
u+ Λ2u+Λ3u

3/2 + Λ4u
2

≤ Λ1

√
2 log J + 2Λ2 log J + Λ3(2 log J)3/2 + 4Λ4(log J)2

≤ σ2
Y ns

−2
J

√
J log J + 4σ2

Y ns
−2
J log J + σ2

Y ns
−2
J J1/4

√
2 log J + 4ns−2

J

√
J

for n sufficiently large. Hence, we obtain for n sufficiently large

Λ1

√
u+ Λ2u+ Λ3u

3/2 + Λ4u
2 ≤ 2σ2

Y ns
−2
J

√
J log J ≤ n(n− 1)

2
cn(J)

by the definition of cn(J) and Lemma C.1 with u = 2 log J yields

T1 ≤
∑
J∈I

Ph0

(∣∣∣∑
i<i′

R1(Zi, Zi′)
∣∣∣ ≥ n(n− 1)

2
cn(J)

)
≤ 6 exp

(
(log J)− 2(log J)

)
≤ 6

J

and thus, T1 = o(1) since J diverges. Consider T2. Markov’s inequality together with

#I ≤ log2(J) ≤ 2 log(J) yield by following the derivation of the upper bound (A.3):

T2 ≤
∑
J∈I

cn(J)−1
√

Eh0 |Un,2(J)|2 ≤ 2 log(J) max
J∈I

cn(J)−1
√

Eh0 |Un,2(J)|2

= O
(
n−1/2 log(J) max

J∈I

√
J

M2
ncn(J)s2

J

)
= O

(
n−1/2 log(J)3/2

√
J
)

= o(1),

using that M−2
n =

√
J(log J)2/n and (cn(J)s2

J)−1 ≤ n/
√
J log J . Lemma C.6 implies

T3 = o(1). Consider T4. We have that

max
J∈I

{
n−1
(

log(J)
J∑
j=1

s−4
j

)−1/2∑
i<i′

YiYi′b
K(J)(Wi)

′(A′GµA−Â′GµÂ
)
bK(J)(Wi′)

∣∣} = op(1)

by following Lemma E.5 of Breunig and Chen [2021] (with their Yi − h0(Xi) and vJ

replaced by our Yi and (
∑J

j=1 s
−4
j )1/2 respectively, and, in particular, we do not need

to impose a lower bound on E[Y 2|W ] since our estimator is un-standardized.) The

previous equation implies T4 = o(1).

Lemma C.6. Let Assumptions 1(i)(iii), 3(i), and 5 be satisfied. Then, there exists
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a constant C > 0 such that

inf
h0∈H

Ph0

(
sup
J∈I

(
c−1
n (J)

∣∣∣ 1
n

∑
i

YiaJ(Wi)− E[Y aJ(W )]
∣∣∣) ≤ C

)
→ 1,

where aJ(w) = 〈QJh0, ψ
J〉′µ(G

−1/2
b S)−l b̃

K(J)(w).

Proof. The result follows by an application of Talagrand’s inequality analogously to

the proof of Chen et al. [2021, Lemma C.2], based on the following upper bounds:

E |YiaJ(Wi)− E[Y aJ(W )]|2 ≤ E |Y aJ(W )|2 ≤ σ2
Y ‖〈QJh0, ψ

J〉′µ(G
−1/2
b S)−l ‖

2

by using Assumption 5(ii) and

|YiaJ(Wi)− E[Y aJ(W )]|1Mn ≤
√
K(J)Mn‖〈QJh0, ψ

J〉′µ(G
−1/2
b S)−l ‖,

where Mn =
{

maxj |Yib̃j(Wi)− E[Y b̃j(W )]| ≤ n1/6
}

.

Lemma C.7. Let Assumptions 1(i)(iii), 3(i), and 5 be satisfied and consider the

mildly ill-posed case, i.e., τj ∼ ja/d. Then, we have infh0∈H Ph0(J0 ∈ Ĵ )→ 1.

Proof. Let En denote the event upon which J(c1) ≤ Ĵmax ≤ J(c2) for some constant

c1, c2 > 0 and observe that P(Ecn) = o(1) by Lemma C.4. For all J > J0, we make use

of the upper bound

∣∣f̂J0− f̂J ∣∣ ≤ ∣∣f̂J0−f(QJ0h0)
∣∣+ ∣∣f̂J−f(QJh0)

∣∣+2
∣∣f(QJ0h0−h0)

∣∣+2
∣∣f(QJh0−h0)

∣∣.
By Lemma C.5, uniformly for all J ∈ I it holds

∣∣f̂J − f(QJh0)
∣∣ ≤ 2σ2

Y s
−2
J

√
J log J

n− 1
+ ‖〈QJh0, ψ

J〉′µ(G
−1/2
b S)−l ‖/

√
n

on some set En,1 ⊆ En where P(Ecn,1) = o(1). For all J > J0 we have∣∣∣f(QJh0 − h0)
∣∣∣ ≤ C‖ΠJh0 − h0‖2

µ ≤ CLJ−2p/d ≤ CL(J+
0 )−2p/d

≤ C0Lτ
2
J+
0

√
J+

0 log n/n,

where in the last inequality we used the definition of J+
0 = inf{J ∈ J : J > J0}.
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Hence, we conclude for all J ≥ J+
0 that

∣∣f̂J0 − f̂J ∣∣ ≤ (C0 + 2σ2
Y )
(
s−2
J0

√
J0 log n/n+ s−2

J

√
J log n/n

)
∨ 1/
√
n.

Due to Lemma C.3 it holds s−2
J ≤ (1 + η)2 ŝ−2

J for some η ∈ (0, 1), uniformly for

J ∈ I ∩ {J > J0}, on some set En,2 with P(Ecn,2) = o(1). Consequently, on En,1 ∩ En,2
it holds

∣∣f̂J0 − f̂J ∣∣ ≤ (C0 + 2σ2
Y )(1 + η)2

(
ŝ−2
J0

√
J0 log n/n+ ŝ−2

J

√
J log n/n

)
∨ 1/
√
n

= (C0 + 2σ2
Y )(1 + η)2

(
V̂ (J0) + V̂ (J)

)
uniformly for J ∈ I ∩ {J > J0}. We conclude that J0 ∈ Ĵ on En,1 ∩ En,2 and

P(En,1 ∩ En,2)→ 1.
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