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This paper considers adaptive, minimax estimation of a quadratic functional
in a nonparametric instrumental variables (NPIV) model, which is an impor-
tant problem in optimal estimation of a nonlinear functional of an ill-posed
inverse regression with an unknown operator. We first show that a leave-one-
out, sieve NPIV estimator of the quadratic functional can attain a convergence
rate that coincides with the lower bound previously derived in Chen and Chris-
tensen [2018]. The minimax rate is achieved by the optimal choice of the sieve
dimension (a key tuning parameter) that depends on the smoothness of the
NPIV function and the degree of ill-posedness, both are unknown in practice.
We next propose a Lepski-type data-driven choice of the key sieve dimension
adaptive to the unknown NPIV model features. The adaptive estimator of the
quadratic functional is shown to attain the minimax optimal rate in the severely
ill-posed case and in the regular mildly ill-posed case, but up to a multiplicative
Vlogn factor in the irregular mildly ill-posed case.
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1. Introduction

Long before the recent popularity of instrumental variables in modern machine learn-
ing causal inference, reinforcement learning and biostatistics, the instrumental vari-
ables technique has been widely used in economics. For instance, instrumental vari-
ables regressions are frequently used to account for omitted variables, mis-measured
regressors, endogeneity in simultaneous equations and other complex situations in
economic observational data. In economics and other social sciences, as well as in
medical research, it is very difficult to estimate causal effects when treatment as-
signment is not randomized. Instrumental variables are commonly used to provide
exogenous variation that is associated with the treatment status, but not with the
outcome variable (beyond its direct effect on the treatments).

To avoid mis-specification of parametric functional forms, nonparametric instru-
mental variables (NPIV) regressions have gained popularity in econometrics and mod-
ern causal inference in statistics and machine learning. The simplest NPIV model
assumes that a random sample {(Y;, X;, W;)}7, is drawn from an unknown joint
distribution of (Y, X, W) satisfying

Y =ho(X)+ U, E[UW]=0, (1.1)

where hq is an unknown continuous function, X is a d-dimensional vector of continuous
endogenous regressors in the sense that E[U|X] # 0, W is a vector of conditioning
variables (instrumental variables) such that E[U|W] = 0. The structural function hg
can be identified as a solution to an integral equation of first kind with an unknown

operator:
E[Y|W = w] = (Thy)(w) := /ho(x)fX|W(x|w)dm,

where the conditional density fx;w (and hence the conditional expectation operator
T) is unknown. Under mild conditions, the conditional density fxw is continuous
and the operator T' smoothes out “low regular” (or wiggly) parts of hg. This makes
the nonparametric estimation (recovery) of hy a difficult ill-posed inverse problem
with an unknown smoothing operator T See, for example, Newey and Powell [2003],
Hall and Horowitz [2005], Carrasco, Florens, and Renault [2007], Blundell, Chen,
and Kristensen [2007], Chen and Reif} [2011] and Darolles et al. [2011]. For a given
smoothness of hg, the difficulty of recovering hg depends on the smoothing property

of the conditional expectation operator T'. The literature distinguishes between the



mildly and severely ill-posed regimes, and the optimal convergence rates for nonpara-
metrically estimating hg are different in the two regimes.

This paper considers adaptive, minimax rate-optimal estimation of a quadratic
functional of g in the NPIV model (1.1):

Flho) == / B (@) () de (1.2)

for a known positive, continuous weighting function u, which is assumed to be uni-
formly bounded below from zero and from above on some subset of of the support of
X. Let & be a sieve NPIV estimator of the NPIV function ho (see e.g., Blundell et al.
[2007]). Chen and Pouzo [2015] and Chen and Christensen [2018] considered infer-
ence on a slightly more general nonlinear functional g(hg) using plug-in sieve NPIV
estimator g(/f;) However, there is no result on any adaptive, minimax rate-optimal
estimation of any nonlinear functional g(hg) of the NPIV function hg yet. Since a
quadratic functional is a leading example of a smooth nonlinear functional in hg,
Chen and Christensen [2018, Theorem C.1] established the minimax lower bound for
estimating a quadratic functional f(hg) in a NPIV model. They also point out that a
plug-in sieve NPIV estimator f (ﬁ) of the quadratic functional f(hg) can achieve the
lower bound in the severely ill-posed regime, but fails to achieve the lower bound in
the mildly ill-posed regime. Moreover, none of the existing work considers adaptive
minimax rate-optimal estimation of the quadratic functional f(hg) in a NPIV model.

In this paper, we first propose a simple leave-one-out sieve NPIV estimator f]
for the quadratic functional f(hg), and establish an upper bound on its convergence
rate. By choosing the sieve dimension J optimally to balance the squared bias and
the variance parts, we show that the resulting convergence rate of J?J — f(ho) coincides
with the lower bound of Chen and Christensen [2018, Theorem C.1]. In this sense the
estimator ft] is minimax rate-optimal for f(hg) regardless whether the NPIV model
is severely ill-posed or mildly ill-posed. In particular, for the severely ill-posed case,
the optimal convergence rate is of the order (logn)~*, where o > 0 depends on the
smoothness of the NPIV function hy and the degree of severe ill-posedness. For the
mildly ill-posed case, the optimal convergence rate of ﬁ] — f(ho) exhibits the so-called
elbow phenomena: the rate is of the parametric order n~'/2? for the regular mildly
ill-posed case, and is of the order n=? for the irregular mildly ill-posed case, where
B € (0,1/2) depends on the smoothness of hg, the dimension of X and the degree of
mild ill-posedness.

The minimax optimal estimation rate of fAJ — f(ho) is achieved by the optimal



choice of the sieve dimension J (a key tuning parameter) that depends on the unknown
smoothness of hy and the unknown degree of ill-posedness. We next propose a data
driven choice J of the sieve dimension based on a modified Lepski method.! The
modification is needed to account for the estimation of the unknown degree of ill-
posedness. The adaptive, leave-one-out sieve NPIV estimator fAf of f(ho) is shown
to attain the minimax optimal rate in the severely ill-posed case and in the regular
mildly ill-posed case, but up to a multiplicative v/logn in the irregular mildly ill-
posed case. We note that even for adaptive estimation of a quadratic functional of a
direct regression in a Gaussian white noise model, Efromovich and Low [1996] already
shown that the extra y/log n factor is the necessary price to pay for adaptation to the
unknown smoothness of the regression function.

Previously for the nonparametric estimation of hy in the NPIV model (1.1),
Horowitz [2014] considers adaptive estimation of hg in L? norm using a model se-
lection procedure. Breunig and Johannes [2016] consider adaptive estimation of a
linear functional of the NPIV function hg in a root-mean squared error metric us-
ing a combined model selection and Lepski method. These papers obtain adaptive
rate of convergence up to a multiplicative factor of \/m (of the minimax optimal
rate) in both severely ill-posed and mildly ill-posed cases. Chen, Christensen, and
Kankanala [2021] propose adaptive estimation of hg in L norm using a modified
Lepski method and tight random matrix inequalities to account for the estimated
measure of ill-posedness. They show that their data-driven procedure attains the
minimax optimal rate in L*° norm and is fully adaptive to the unknown smoothness
of hy in both severely and mildly ill-posed regimes. Our data-driven choice of the
sieve dimension is closest to that of Chen et al. [2021], which might explain why we
also obtain minimax optimal adaptivity for the quadratic functional f(hy) in both
severely and mildly ill-posed regimes.

While Horowitz [2014], Breunig and Johannes [2016] and Chen et al. [2021] use
plug-in sieve NPIV estimators in their adaptive estimation of a linear functional
of hg, we use a leave-one-out sieve NPIV estimator fJ for the quadratic functional
f(ho) = [ h3(z)p(z)dz. Recently Breunig and Chen [2021] propose a test statistic
that is based on a standardized leave-one-out estimator of a quadratic distance for
a null hypothesis of E[(ho(X) — h®(X))*u(X)] = 0 in a NPIV model (for some
parametric, semiparametric or shape restricted hA®). They construct an adaptive

minimax test using a random exponential scan procedure. We use the unstandardized

1See Lepski [1990], Lepski and Spokoiny [1997] and Lepski, Mammen, and Spokoiny [1997] for
detailed descriptions of the original Lepski principle.



leave-one-out estimator ﬁ] in our modified Lepski procedure for adaptive minimax
estimation of f(hg) in a NPIV model. It is well-known that adaptive minimax testing
and adaptive minimax estimation are related but different (see, e.g., Giné and Nickl
[2021]). In particular, while both papers apply a tight Bernstein-type inequality for
U-statistics (Houdré and Reynaud-Bouret [2003]) in the proofs, the adaptive optimal
rates are different. For instance, the adaptive minimax L? separation rate of testing

172 while our adaptive minimax

in Breunig and Chen [2021] is always slower than n~
estimation for f(hg) can achieve the parametric rate of n=%/2 for regular mildly ill-
posed NPIV models.

Minimax rate-optimal estimation of a quadratic functional in density and direct
regression (in Gaussian white noise) settings has a long history in statistics. See,
for example, Bickel and Ritov [1988], Donoho and Nussbaum [1990], Fan [1991],
Efromovich and Low [1996], Laurent and Massart [2000], Cai and Low [2006], Giné
and Nickl [2008], Collier, Comminges, and Tsybakov [2017] and the references therein.
To the best of our knowledge, there are not many published papers on minimax
estimation of a quadratic functional in difficult inverse problems. See Butucea [2007],
Butucea and Meziani [2011], Chesneau [2011] and Kroll [2019] for deconvolutions and
inverse regressions in Gaussian sequence models. Moreover, Chesneau [2011] seems
the only published work on adaptive estimation of a quadratic functional in a special
deconvolution (with a known operator). Our paper is the first to propose a simple
estimator that is adaptive minimax rate-optimal for a quadratic functional in a NPIV
model, and also contributes to inverse problems with unknown operators.

The rest of the paper is organized as follows. Section 2 presents the leave-one-
out sieve NPIV estimator of the quadratic functional f(hg), and derives its optimal
convergence rates. Section 3 first presents a simple data-driven procedure of choosing
the sieve dimension using a modified Lepski method. It then establishes the optimal
convergence rates of our adaptive estimator of the quadratic functional. Section 4
provides a brief conclusion and discusses several extensions. All proofs can be found
in the Appendices A—C.

2. Minimax Optimal Quadratic Functional Estimation

This section consists of three parts. The first subsection introduces model prelimi-
naries and notation. Subsection 2.2 introduces a simple leave-one-out, sieve NPIV
estimator of the quadratic functional f(hg). Subsection 2.3 establishes the conver-

gence rate of the proposed estimator, and shows that the convergence rate coincides



with the lower bound and hence is optimal.

2.1. Preliminaries and Notation

We first introduce notation that is used throughout the paper. For any random
vector V with support V, we let L*(V) = {¢: V = R, ||¢]|12(v) < 0o} with the norm
|Pll2vy = VE[@2(V)]. If {a,} and {b,} are sequences of positive numbers, we use
< b, and b, < a,.

~

the notation a,, < b, if limsup,,_, . a,/b, < oo and a, ~ b, if a,
We consider a known positive, continuous weighting function p, which is assumed
to be uniformly bounded below from zero and from above on some subset of X,

denoted by X,. Denote L> = {h : &, — R,||hl|, < oo} with the norm [[h, =
\/ [ h*(x)p(x)dz. We consider basis functions {t;};>1 to approximate the NPIV

function hg. Its orthonormalized analog with respect to || - |, is denoted by {Jj}jzl.

We assume that the structural function hg belongs to the Sobolev ellipsoid
Ho(p, L) = {h € LZ : ijp/dw,%ﬁ < L}, for d/2<p<oo, 0<L< .
j=1

Let T : L*(X) — L*(W) denote the conditional expectation operator given by
(Th)(w) = E[A(X)|W = w|. Finally let {¢y,...,1,} and {by,...,bx} be collections
of sieve basis functions of dimension J and K for approximating functions in L?(X)
and L?(W), respectively. We define the sieve measure of ill-posedness which, roughly
speaking, measures how much the conditional expectation operator 7' smoothes out

h. Following Blundell et al. [2007] the sieve L? measure of ill-posedness is

i f(h)

Ty= Ssup ————— = Sup ,
hewht0 | TR\ 2wy newsnzo || Th] 2wy

where W; = clsp{¢1,...,9;} C L*(X) denotes the sieve spaces for the endogenous
variables. We call a NPIV model (1.1)

i) mildly ill-posed if 7; ~ j%/? for some a > 0; and
j

(ii) severely ill-posed if 7; ~ exp(2j*/?) for some a > 0.

2.2. A Leave-one-out, Sieve NPIV Estimator

Let {(Y;, X;, W;)}™, denote a random sample from the NPIV model (1.1). The sieve

NPIV (or series 2SLS) estimator h of kg can be written in matrix form as follows



(see, e.g., Chen and Christensen [2018])
h(-) = o7 () [W P9 W' PRY = ¢ () AB'Y /n

where P = B(B'B)" B’ and Y = (Y3,...,Y,),

(W (X1),. .., (Xn))
(L), ... b5 (W)

O (x) = (), .. ¢ (x) W
Vi (w) = (by(w),..., bg(w)) B

and A = n[U'PgW]~W'B(B'B) is an estimator of A = ['G;'S]71S'G; !, with S =
E[b* (Wi)y! (X;)'] and Gy, = B[b™ (Wi)b" (W3)'].

As pointed out by Chen and Christensen [2018], although one could estimate
f(ho) by the plug-in sieve NPIV estimator f (ﬁ), it fails to achieve the minimax lower

bound. We propose a leave-one-out sieve NPIV estimator for the quadratic functional

f(ho) as follows:

fr= ﬁ Z YibK (Wi A'GL AV (W)Y
1<i<i’<n

where G, = [/ (2)y’ () u(x)dz. We will show that this simple leave-one-out esti-

mator ]?J can achieve the lower bound for estimating f(hy).

Based on many simulation results in Blundell et al. [2007] and Chen and Chris-
tensen [2018], the crucial regularization parameter in sieve NPIV estimation of hg
is the dimension J of the sieve space used to approximate unknown function hg.
In this paper, we simply let K(J) = cgJ for some constant cx > 1. Further,
we let Cyy = sup, |Gp'*¢/(z)] and G = sup, |G, /*05 (w)]. For instance,
Cos = O(VJ) and G = O(VK) for (tensor-product) polynomial spline, wavelet
and cosine bases. Denote (; = max((y s, (k) for K = K(J). In the rest of the paper
we restrict sieve bases to the ones such that ¢; = O(V/J).

2.3. Rate of Convergence

We first introduce assumptions that are used to derive our rate of convergence of
the estimator fJ We denote the sieve Least Squares (LS) projection of h onto
U, = clsp{t, ..., ¢ } as Hyh(x) = 7 (x)'G, (7 h),. For hy € Ha(p, L) we have
|ho — Myhgll, < LJ7P/? which is used throughout this paper. This implies that
 J(log J)||ho — IL ho||,, = o(1) as J goes to infinity (since p > d/2).



Assumption 1. (i) T[h — ho] = 0 for any h € L7 implies that f(h) = f(ho); (ii)
supew E[Y?|[W = w] < 7% < 0o and E[Y*] < oo; (iii) the densities of X and W are
Lebesgue continuous and uniformly bounded below from zero and from above on the

closed rectangular supports X C R? and W C R, respectively.

Assumption 2. 7;J4/(log J)/n = O(1).

Below we let Tlg(w) = b% (w)' G, ' E[bX (W)g(W)] denote the sieve LS projection
of g € L*(W) onto By = clsp{by, ..., bx }.

Assumption 3. (i) sup,cq, 7/ ||(IHgT — T)h|| 20w /|| 2|0 < vs where vy < 1 for all
J and vy — 0 as J — oo. (ii) there exists a constant C > 0 such that 7;||T(hy —
rho) ||l 2wy < Cllho — Hyhol|,-

For a r x ¢ matrix M with r < ¢ and full row rank r we let M;” denote its left
pseudoinverse, namely (M’'M)~M" where ' denotes transpose and ~ denotes general-
ized inverse. Below, || - || respectively denotes the vector ¢5 norm when applied to a
vector and the operator norm |[A| := sup,, = [[Az|| when applied to a matrix A.
Let (s1,...,5s) denote the singular values, in non-increasing order, of Gb_I/ZSG;l/z.
In particular s; = smin(Ggl/ZSG,jl/Q).

Assumption 4. ||diag(si, ..., s)) (Gb_lmSG;l/Q)l_H < D for some constant D > 0.

Discussion of Assumptions: Assumption 1(i) ensures identification of the non-
linear functional f(hg). Assumption 2 restricts the growth of the sieve dimension
J. Assumption 3(i) is a mild condition on the approximation properties of the basis
used for the instrument space and is first imposed in Chen et al. [2021]. In fact,
|(IlgT =T)h| 2wy = 0 for all h € ¥; when the basis functions for Bx (with K > J)
and ¥ ; form either a Riesz basis or an eigenfunction basis for the conditional expec-
tation operator. Assumption 3(ii) is the usual L? “stability condition” imposed in the
NPIV literature (cf. Assumption 6 in Blundell et al. [2007]). Note that Assumption
3(ii) is also automatically satisfied by Riesz bases. Assumption 4 is a modification
of the sieve measure of ill-posedness and was used by Efromovich and Koltchinskii
[2001]. Assumption 4 is also related to the extended link condition in Breunig and
Johannes [2016] to establish optimal upper bounds in the context of minimax optimal
estimation of linear functionals in NPIV models. Finally we note that by definition,

s satisfies

||HK1 hHLZ(W) -1
_ MEZW) 2.1
57 REW ;,h=£0 2] . =Ty (2.1)



for all K = K(J) > J > 0. Assumption 3(i) further implies that

W mi IThll 2wy sup (I T — Tohllregwy _ (2.2)
T hevy b0 ||h]|, heW ;,h£0 idim o

for some constant ¢, > 0. We shall maintain Assumption 3(i) and use the equivalence
of s; and 7; ' in the paper.
The next result provides an upper bound on the rate of convergence for the esti-

mator J?J

Theorem 2.1. Let Assumptions 1-3 hold. Then:

@¢7+meﬂu@“%xu+mmw4hmm
n

(2.3)
If in addition hy € Ha(p, L) and Assumption 4 holds, then:

1. Mildly ill-posed case: choosing J ~ n?¥&@ta)+d) jmylies

fr = f(ho) = { gz EZ:?ZT(?WM) ’ Z:i i Zijﬁ (2.4)
2. Severely ill-posed case: choosing

J ~ <logn _dptd log log n) v

mplies
fs = f(ho) = Oy ((logn)~/%). (25)

Theorem 2.1 presents an upper bound on the convergence rates of fAJ to f(ho).
When the sieve dimension J is chosen optimally, the convergence rate (2.4) coincides
with the minimax lower bound in Chen and Christensen [2018, Theorem C.1] for the
mildly ill-posed case, while the convergence rate (2.5) coincides with the minimax
lower bound in Chen and Christensen [2018, Theorem C.1] for the severely ill-posed
case. Moreover, within the mildly ill-posed case, depending on the smoothness of hg
relatively to the dimension of X and the degree of mildly ill-posedness a, either the

first or the second variance term in (2.3) dominates, which leads to the so-called elbow



phenomenon: the regular case with a parametric rate of n='/2 when p > a+ d/4; and
the irregular case with a nonparametric rate when p < a+d/4. In particular, Theorem
2.1 shows that the simple leave-one-out estimator fAJ is minimax rate optimal provided
that the sieve dimension J is chosen optimally.

Chen and Christensen [2018, Theorem C.1] actually established lower bound for
estimating a quadratic functional of a derivative of hy in a NPIV model as well. Using
Fourier, spline and wavelet bases, we can easily show that our simple leave-one-out,
sieve NPIV estimator of the quadratic functional of a derivative of hg also achieve the
lower bound, and hence is minimax rate-optimal. We do not present such a result

here since it is a very minor extension of Theorem 2.1.

3. Rate Adaptive Estimation

The minimax rate of convergence depends on the optimal choice of sieve dimension J,
which depends on the unknown smoothness p of the true NPIV function hy and the
unknown degree of ill-posedness. In this section we propose a data-driven choice of
the sieve dimension J based on a modified Lepski method; see Lepski [1990], Lepski
and Spokoiny [1997] and Lepski et al. [1997] for early development of this popular
method.

In this section we follow Chen et al. [2021] and let ¥ ; be a tensor-product Cohen-
Daubechies-Vial (CDV) wavelet (see, e.g., chapter 4.3.5 of Giné and Nickl [2021]) or
dyadic B-spline sieve (see, e.g., Appendix A.1 of Chen et al. [2021]) for Ha(p, L). Let
T denote the set of possible sieve dimensions J. For example for (order r) B-splines,
T={J=2+r—1)%:1eNU{0}}. Since f; is based on a sieve NPIV estimator,
we can simply use a random index set Z that is proposed in Chen et al. [2021] for

their sup-norm rate adaptive sieve NPIV estimation of hg:

Z={JeT:01(08 Jyax)? < J < Jmax},
where

fmaxzmin{JET:%U\/@g 10\/ﬁ<@iﬁ\/log7}, (3.1)
5, is the smallest singular value of (B'B/n)~Y2(B'¥/n)G,"?, and J* = min{j €

T:7>J}

We define our data driven choice J of “optimal” sieve dimension for estimating

10



f(hg) as follows:
7 = min {J T |fr—Frl < co(V(I)+V(J)) for all J' € T with J' > J} (3.2)

for some constant ¢y > 0 and

Py = Yy 5.3

where a Vb := max{a, b}. The random index set Z is used to compute our data driven
choice (3.2) since the unknown measure of ill-posedness 7; is estimated by 5.

We introduce a non-random index set Z = {J € T : J < J}, where J =
sup {J eT: TJJ\/W < E} for some sufficiently large constant ¢ > 0. Let
B={heL:|hllw<L}and P >p>3d/4 The following assumption strengthens

some conditions imposed in the previous section.

Assumption 5. (i) supyey,pr)ns |h — k|l < cJ 7P for some finite constant
c > 0 for all p € [p,p], with ¥; being CDV wavelet or dyadic B-spline basis; (ii)
sup,ew E[Y4W = w] <7} < ooy (iii) Assumptions 3(ii) and 4 hold for all J € T.

The next result establishes an upper bound for the adaptive estimator fj
Theorem 3.1. Let Assumptions 1(i)(iii), 3(i), and 5 hold. Then, we have in the

1. muldly ill-posed case:

sup sup Py, <‘fj— f(ho)| > Clrn> =o(1) (3.4)
nB

p€E[p,p] ho€Ha(p,L

for some constant Cy; > 0 and where

(VIogn/n) O ipp < a v d/a,
Ty =
n=1/2, if p>a+d/4.

2. severely ill-posed case:

sup sup Py, <‘fj— f(ho)| > Cg(logn)_2p/“> = o(1) (3.5)

p€[p,pl ho€Ha(p,L)NB

for some constant Cy > 0.

Theorem 3.1 shows that our data-driven choice of the key sieve dimension can

lead to fully adaptive rate-optimal estimation of f(hg) for both the severely ill-posed

11



case and the regular mildly ill-posed case, while it has to pay a price of an extra
Viogn factor for the irregular mildly ill-posed case (i.e., when p < a + d/4). We
note that when @ = 0 in the mildly ill-posed case, the NPIV model (1.1) becomes
the regression model with X = W. Thus our result is in agreement with the theory
in Efromovich and Low [1996], which showed that one must pay a factor of v/logn
penalty in adaptive estimation of a quadratic functional in a Gaussian white noise
model when p < d/4.

In adaptive estimation of a nonparametric regression function E[Y|X =] = h(+),
it is known that Lepski method has the tendency of choosing small sieve dimension,
and hence may not perform well in empirical work. We wish to point out that due to
the ill-posedness of the NPIV model (1.1), the optimal sieve dimension for estimating
f(ho) is smaller than the optimal sieve dimension for estimating f(E[Y|X = -]).
Therefore, we suspect that our simple adaptive estimator of a quadratic functional of

a NPIV function will perform well in finite samples.

4. Conclusion and Extensions

In this paper we first show that a simple leave-one-out sieve NPIV estimator of the
quadratic functional f(hg) is minimax rate optimal. We then propose an adaptive
leave-one-out sieve NPIV estimator of the f(hg) based on a modified Lepski method to
account for the unknown degree of ill-posedness. We show that the adaptive estimator
achieves the minimax optimal rate for the severely ill-posed case and for the regular
mildly ill-posed case, while a multiplicative v/logn term is the price to pay for the
irregular mildly ill-posed NPIV problem.

Like all existing work using Lepski method, implementation of our data-driven
choice relies on a calibration constant. To improve finite sample performance over
the original Lepski method, Spokoiny and Vial [2009] suggest a propagation approach,
Chernozhukov, Chetverikov, and Kato [2014] and Spokoiny and Willrich [2019] pro-
pose bootstrap calibrations in kernel density estimation and in linear regressions with
Gaussian errors respectively. Chen et al. [2021] propose a bootstrap implementation of
a modified Lepski method in their minimax adaptive sup-norm estimation in a NPIV
model, and show its good performance in finite samples. Their bootstrap implemen-
tation can be easily extended to calibrate the constant in our adaptive estimation of
the quadratic functional in a NPIV model. We leave this to future refinement.

Our results can be extended in several directions. First, we can relax the Sobolev
ball assumption imposed on hg in the NPIV model. We can let the NPIV function

12



ho belong to a bump algebra space. The result by Collier et al. [2017] on minimax
estimation of a quadratic functional under sparsity constraints can be useful for this
extension. Second, we focus on adaptive estimation of a quadratic functional of
the NPIV function h( in this paper. There are works on minimax-rate estimation
and adaptive estimation for more general smooth nonlinear functionals of densities
and of nonparametric regressions; see, e.g., Birgé and Massart [1995], Liu, Mukherjee,
Robins, and Tchetgen [2021] and the references therein. We can combine our approach
here with those in the literature for extensions to other smooth nonlinear functionals of
the NPIV function hy. Such an extension will allow for adaptive minimax estimation

of nonlinear policy functionals in economics and modern causal inference.

A. Proofs of Results in Section 2

Recall the 2SLS projection of h onto ¥ is given by:
Qh(x) = ¢’ (2) [5Gy 871Gy R (W) (X)) = o7 (x) ARSI (W) R(X)).

For a r x ¢ matrix M with r < ¢ and full row rank r we let M, denote its left

pseudoinverse, namely (M'M)~M’'. Let VZ‘] = G;l/Q@/}J and b = Gb_l/sz. Thus, we
have AG,* = (G, *9); and

1/2 —1/2 g v—1/2y—
GIPAG” = (G, '?SG V).
In particular, we can write

Quh(x) = o7 (2)(G, 28) B (W)h(X))]

O (2)(Gy2SGYA) T B (W)h(X)].

The minimal or maximal eigenvalue of a quadratic matrix M is denoted by

Amin(M) or Apax(M). Recall that

~ 1 ~ ~
= ——— ) YYubR(W)AG,A(Wy).
fJ n(n — 1) ; X (M/’L) Gu (Wz )

13



PrROOF OF THEOREM 2.1. Proof of Result (2.3). Note that

F(@ah) = [ (#7@)(G528); BB (W)ho(X)) o)
= |GG, 28) BD* (W)ho (X)) = | BV

using the notation V/ = Y;GY/>AbK (W;). Thus, the definition of the estimator f;

implies

J/C} - f(QJhO Z Z V;j‘/z’] VVle) (Al)
J=1 i#£d
+ m ; Y.Y: bK i)/<A/G#A . A/G“A> bK(Wi/>, (AZ)

where we bound both summands on the right hand side separately in the following.

Consider the summand in (A.1), we observe

B[S (Vivi BV [

j=1 i

=2n(n—1)(n —2) Z E [(Vlj%j — E[Vi]?) (Vajr Vayr — E[Vlj’]2>]

Jy'=1
A\

J/

-~

1

+nln=1) 3 B[ (Vigh — EVAPE) (VigVay — EViP) .

J/

-~

11

By Assumption 1(ii) it holds sup,cy, E[Y?|W = w] < 7%, which together with Bre-
unig and Chen [2021, Lemma E.7] implies )\max(Var(YgK(W)) < 7%. To bound the

summand I we observe that

I= ZEVM [Viy)] Cov(Vay, Viyr) = E[V) Cou(VY, Vi) E[V/]
J,j'=1

< e (Var (VS (W) |G, 5GV2) BIVY |

— 5 [(Qh v >L<G51/25>1H2

14



by using the notation V;/ = Y;(G, /*SG,, %) b5 (W;). Consider I1. We observe

J

IT=n(n—1) ) E[V;;Viy]* —n(n - 1)<ZEMJ]2>2

3y'=1 Jj=1

J
<n(n-—1) Z E[Vi;Viy)? < 265 n(n — 1)s;4J

where the last inequality stems from Breunig and Chen [2021, Lemma E.1] together
with sup,,cy E[Y2W = w] < 7%. Consequently, we obtain

_ J
‘ (n—1) ZZ V;J‘/;/] Vlj]Q)‘ <4 (_H (Qrho, ¥ G 1/2 H + 2,44 )
J

J=1 i#d

(A.3)

The second summand in (A.2) can be bounded following the same proof as that of
Breunig and Chen [2021, Lemma E.4] (replacing their (Y; — ho(X;)) with our Y; and
our Assumption 1(ii)), which yields

Fr = F(@Qsho) = (f” Qrho, 7). (G297 || *T@) :

Next, by the definition of Q; we have: (Qho, ¥”), = (G, >SG; )7 B[bK) (W) ho(X)).

Thus, we have

1(Quho, 7Y, (Gy 29 || < ([ (hos (G 29)T ]|
+ 532 | X (W) (ho(X) — TLyho(X))] ||,

By inequality (2.2) and Assumption 3(ii), we have

2| BEEO (W) (ho(X) = yho(X))]| = O (3 ITKT (o — TLsho)ll sz )
= O(TJ||h0 - HJhO||M).

It remains to evaluate

F(Qrho) — f(ho) = [|Q.holl2 — [HHJhOHi + |lho — HJhOHi}

Consider the first summand on the right hand side. There exist unitary matrices M,

15



My with b5 := MbX and ¢/ := Mayp” such that E[bX)(W)47 (X)) has an upper

J x J matrix diag(sy,...,s;) and is zero otherwise. We thus derive

J J
> s°E Z ho, )5 = [ITLsholl?,

Jj=1

1Qsholl? = |[(Gy 2SG ) B (W) ho(X)]

and hence f(Qsho) — f(ho) = —I|lho — I shel|%. This completes the proof of Result
(2.3).
For the proofs of Results (2.4) and (2.5), we note that hg € Ha(p, L) implies
lho — T sholl, < LJ P/

Moreover, by inequality (2.2) and Assumption 4 we have:

H<h07¢J>L<Gb_1/2S)fH = H<h0,{5 >u(G_1/25'G 1/2)~ )i || < Deit ZT hoa% I

These bounds are used below to derive the concrete rates of convergence in the mildly
and severely ill-posed regimes.
Proof of Result (2.4) for the mildly ill-posed case. The choice of J ~ n?¥ (“P+a)t+d)

implies
N2 ~o pm2 il =8/ (ra)+d)
and for the bias term J~%/¢ ~ n=8p/(4p+a)+d) \We now distinguish between the two

regularity cases of the result. First, consider the case p < a+d/4, where the mapping

j > j2e=p)/d+1/2 ig increasing and consequently, we observe

J

J
! Z hoa% T ~n! Z(ho,%)ij2p/d—1/2j2(a—p)/d+1/2
7=1

j=1
< L j2a-p)/dtl/2 ) —8p/(4(p+a)+d)

Moreover, we obtain

n—ngj—Qp/d ~ n L j2a=p)/d < n, 80/ (4(p+a)+d)

16



Finally, it remains to consider the case p > a + d/4. In this case, we have that

J J
> (ho, )27 S (ho, )25 = O(1)
7j=1 J=1

and consequently, the second variance term satisfies n=* H (Qsho, 7). _1/ 2 H

O(n~1) which is the dominating rate and thus, completes the proof of the result.
Proof of Result (2.5) for the severely ill-posed case. The choice of

d d/a
log log n)

4
J ~ (logn— Pt

implies

d d/a
274 ~ n72 T exp(2JY4) ~ (logn — log log n) (logn)~“rtd/a  (logn)~*#/e,

We further analyze for the bias part

dp+d il
Jw/d <logn _t log log n) ~ (logn)~*/a.

Moreover, since the mapping j — j~2/?exp(j/9) is increasing we obtain

J
n 12 hoﬂ% 7' ~n- Z 2 QP/d 2p/deXp(ja/d>
7j=1
< exp( T~ (o) (o) P S (g )
and finally

n " 2724 o pLexp(JY )72/ < (logn) /e,

which shows the result. O

17



B. Proofs of Results in Section 3

We denote H = (U, Ha(p, L) N B and recall that B = B(L) = {h : [|h[l < L}.

Below, we make use of the notation
T = {J eT:|fy— Frl < coV(J)+V(J)) for all J' € T with J' > J}

and recall the definition Z = {J €T :0.1(log jmaX)Q <J< jmax}. We denote

J(e) =sup{J € T : 750/ (log J)/n < c}
for some constant ¢ > 0. The oracle choice of the dimension parameter is given by

J(logn)
n

Jo = Jo(p, co) = sup {J eT: V()< cOJ—Qp/d}, V(J) =12 V—— (B.1)

Si-

for some constant ¢y > 0. We introduce the set
& ={Jhe Tyn{[5; — 54| <nsy for all J € T}

for some 7 € (0, 1).

PROOF OF THEOREM 3.1. Proof of Result (3.4) for the mildly ill-posed case. Due
to Chen et al. [2021, Lemma B.5] we have J(c1) < Juax < J(c2) for some constants
c1,c2 > 0 on &' The definition J = min Je7 J implies J < Jy on the set £ and

hence, we obtain

‘.]?J — f(ho)| ey < |-]/C:7 - Eol Le: +| o — fho)| Le:

< (V) + V(o)) 1z +1F = Flho)l.

On the set &, we have |3y — s;| < nsy, for some n € (0,1), which implies 5;* <
s7%(1 —n)~% and thus, by the definition of \A/() in (3.3) we have

T (o) 165 < cO<1—n>—2((sf2ﬁ+stﬁo) Le; Vlj’f”) V=S ko).

Using inequality (2.2) together with Assumption 3(i) yields s> < ¢, 72 for all J, see

18



inequality (2.2). Consequently, from the definition of V(-) in (B.1) we infer:

75— lho)| 15 < 2 (( I+ 75Vh) 1 1ogn>\/%+\ffo—f(ho)’

< LT (V) + V() ey +Fr — (o)l

SV (Jo) + | fro — flho)]

for n sufficiently large, where the last inequality is due to V(J ) - < V(Jp) since
J < Jo on €. By Lemmas C.3 and C.7 it holds P() = 1+ o(1).

The definition of the oracle choice in (B.1) implies Jy ~ (n/y/Iogn)?¥AFta)+d) iy
the mildly ill-posed case. Thus, we obtain

n*2<log n)Tf}OJO ~ n*2(10gn J1+4a/d /log n/n) 8p/ (p+a)+d)

which coincides with the rate for the bias term. We now distinguish between the two
cases in the mildly ill-posed case. First, consider the case p < a 4 d/4. In this case,

the mapping j — j2*P)/4+1/2 is increasing in j and consequently, we observe
S B0 B (VB

Moreover, using hg € Ha(p, L), i.e., ijl(ho,%ﬁj%’/d < L, we obtain

n'r3 Z ho,@/)] < (V/logn/n)t/ Ata+d)

J>Jo

Finally, it remains to consider the case p > a+ d/4, where as in the proof of Theorem
2.1 we have Zjil Tj2<h0,QZj>Z = O(1), implying n~*{[(Qho, V"), _1/2 H
O(n~1) which is the dominating rate and thus, completes the proof for the mlldly
ill-posed case.

Proof of Result (3.5) for the severely ill-posed case. We have

‘J?j—f(ho)}llggﬁ |]?j_f(th0)’]lg;;+f max  |f(Qsho — ho)| Lex

J(c1)<J<J(e2)

J(e2)log J(e2)  [{Qyepyho, w7 )(G 2SI o
—2 \/ J(c2)'"0 p\b l 2p/d
< 25y (SJ(CQ) — + NG + (J(1))
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with probability approaching one by Lemma C.5. From Chen et al. [2021, Lemma
B.2] it holds, in the severely ill-posed case, J;” = inf{J € T : J > Jo} > J(c;) for all

n sufficiently large and thus, by the definition of J(-) we have

-~ _ — —2p/d
|77 = F(ho)| 1e; < (255 +1)(CT(ea)) ™
with probability approaching one, using that J(c;) > C'J(cy) for some constant C' > 0.
From the definition of J(-) we have (clogn)¥®

sufficiently large. This implies

>
< J(cy) for any ¢ € (0,1) and n

‘J?j— f(ho)} lex = Op((log n)—zp/a)7

which completes the proof. O
C. Supplementary Lemmas
We first introduce additional notation. First we consider a U-statistic
T— > Ri(Z;, Zy)
TL,I - n(n . 1) — 1 (2 i
where Z; = (Y;, W;) and the kernel R; is given by
Ri(Zs, Zi) = Y; 1ag, XDV (W) A'G L AV (W)Yo 1,
(C.1)

where M; = {|Y;| < M,} with M,, = J~/*\/n/(log J). Note that the kernel R, is

a symmetric function such that E[R;(Z;,z)] = 0 for all z. We also introduce the

U-statistic

N Ry(Z Z)

Upg = ——
* o —1) i<

where the kernel R, is given by

Ry(Zi, Zyr) = YD (W) A'GL A D (Wi )Yy Lagevars
— B Yo" (WY AGL A D (W)Yo Lareonss, |-

We make use of the following exponential inequality established by Houdré and
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Reynaud-Bouret [2003].

Lemma C.1 (Houdré and Reynaud-Bouret [2003]). Let U,, be a degenerate U-statistic
of order 2 with kernel R based on a simple random sample Z,...,Z,. Then there

exists a generic constant C > 0, such that

]P’(’ S R(Z.Z)

> C(Al\/ﬂ + Agu + A% + A4u2>> < 6exp(—u)

1<i<i'<n
where
n(n—1
A} = %E[RQ(Zh 7)),
Ao =mn sup E[R(Z1, Zs)v(Z1)k(Zs)],

||V||L2(Z)SlvH”H[ﬂ(z)gl

As = \/nsup|E[R2(Z1,z)]|,

Ay = sup |R(z1, 29)].

21,22

The next result provides upper bounds for the estimates Ay, Ao, A3, A4, when the

kernel R coincides with Ry given in (C.1).

Lemma C.2. Let Assumption 1(ii) be satisfied. Given kernel R = Ry, it holds:

AT < s, (C.2)
Ay <253 ns;? (C.3)
A3 <Gy Mo/negds)? (C.4)
Ay < exM?2Js;?. (C.5)

Proof. The result follows from the proofs of Lemma E.1 and Lemma F.2 of Breunig
and Chen [2021] using Assumption 1(ii). O

Lemma C.3. Let Assumption 1(iii) hold and V; be CDV wavelet or dyadic B-spline
basis. Then, for any constant n € (0,1) we have

P(sups}l\fs} —sy| < 77) — 1.
JeT

Proof. The result is due to the proof of Lemma C.7 of Chen et al. [2021]. O
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Lemma C.4. Let Assumptions 1(iii) and 3(i) hold and V; be CDV wavelet or dyadic

B-spline basis. Then, for any constants ¢y, co > 0 we have

~ J—

P(j(cl) < T < J(c2)> Sl

Proof. The result is due to Chen et al. [2021, Lemma B.5]. O

Below, for simplicity of notation, we denote J := J(c) for some constant ¢ > 0

and we make use of the notation

o) = 203572 LBy w6, )7 v

Lemma C.5. Let Assumptions 1(i)(iii), 3(i), and 5 be satisfied. Then, we have
nf By, (|fJ — f(Qho)| < culJ) VJ € z) S (C.6)

Proof. First, observe that by making use of Assumption 5 it holds ¢,(J) = o(1)

uniformly in J € Z. We make use of the decomposition

Fr— £(Qsho)

= T D (VFO(W) — B (1)) AG AW (W) — ElY O (1)

i<’
4
+— > BV WAG AV (W) — EY < (W)
2 ~
- YV K(J) V(AG A— AG A K(J) ).
+n(n_1)§j Y b D (W) (A'G, G A (W)

<3/

Using the U-statistic notation introduced at the beginning of this section we obtain

P, <n}3%< {eal) s = £(@oho)| } > 1) <P (H}gg {eal )M thua (D]} > i)
B (s {en) et} > 3)

+ Py, (max{ 1\-21& YVHEO (W) A'GL A(VibED (W) — B[y K (W)])\} > 211)

— 1 At Al 1
2 (e e (6, - 26,0 ) )

i<d/

= T1+T2+T3—|—T4.
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Consider T;. We make use of U-statistics deviation results. To do so, consider
A1, ..., A4 as given in Lemma C.1. From Lemma C.2 we infer with v = 2log.J and
M, = J~'/*/n/(log J) that for all J < J we have

A+ AputAsu®? + Ayu®
< Ayy/2log J + 2A;51og T + Ag(2log J)3/* + 4A4(log J)?
< oyns;*\/ Jlog J + doyns;? log J + oyns ;> JHY4\[21og J + 4ns}2\/j
for n sufficiently large. Hence, we obtain for n sufficiently large

n—1)

AU+ Ao+ Asu? + Agu® < 26@713}%/ Jlog J < ! 5 cn(J)

by the definition of ¢,(.J) and Lemma C.1 with v = 2log .J yields

T, < tho (‘ ZRl(Zi7Zi’)

JeT 1</

o

> @c&ﬂ) < 6exp ((log J) — 2(log J)) <

and thus, T} = o(1) since J diverges. Consider T,. Markov’s inequality together with

#TI <log,(J) < 2log(J) yield by following the derivation of the upper bound (A.3):

Ty <) eald) /B [Un2(D)[? < 200g(T) max c, (J) "/ En [Un () 2

JeT
= 0(n P log(Tymax — YT ) = 0(n " 10g(7)2V/T) =
O(n log (/) max Mﬁcn(J)8?7> O(n log (/) \/}) o(1),
using that M2 = v/J(log J)?/n and (¢, (J)s%)~" < n/+v/JlogJ. Lemma C.6 implies
T3 = o(1). Consider Ty. We have that

- L2 ~

max {n 1(1og(J) Y 4) Z}/i}/i/bK(J)(Wi)’(A’GMA—A’GM/DbK(J)(Wi,)\} = 0,(1)
j=1 i<

by following Lemma E.5 of Breunig and Chen [2021] (with their Y; — ho(X;) and v,

replaced by our Y; and (ijl 354)1/ 2 respectively, and, in particular, we do not need

to impose a lower bound on E[Y?|I¥] since our estimator is un-standardized.) The

previous equation implies T = o(1). O

Lemma C.6. Let Assumptions 1(i)(iii), 3(i), and 5 be satisfied. Then, there exists
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a constant C > 0 such that

JET

hlorg{IP’hO (sup( ‘—ZYGJ YaJ(W)]D < C) — 1,

where az(w) = (Qrho, 7Y, (Gy ' *9)7 05D (w).

Proof. The result follows by an application of Talagrand’s inequality analogously to
the proof of Chen et al. [2021, Lemma C.2], based on the following upper bounds:

E|Yia,(W;) = EYa,(W))P < EYa,(W) < 03 [(Qsho. v”),(G28) |
by using Assumption 5(ii) and

Yias(W;) = E[Y ay(W)]| Tar, < VET)Ml[(Qrho, ¢7),(Gy 29,
where M, = { max; |Y;b;(W;) — E[Yb;(W)]| < n/6}. -

Lemma C.7. Let Assumptions 1(i)(ii1), 3(i), and 5 be satisfied and consider the
maldly ill-posed case, i.e., T; ~ 4§/ Then, we have infr e Pry (Jo € f) — 1.

Proof. Let &, denote the event upon which J(c;) < jmax < J(cp) for some constant
1,2 > 0 and observe that P(S) = o(1) by Lemma C.4. For all J > .J;, we make use
of the upper bound

o= Fal < | Foo— F(@Quaoho)| | Fr = F(Quho) | +2| F(Quyho — o) | +2| F(Qrho— ho) -
By Lemma C.5, uniformly for all J € Z it holds

V/Jlog J
n

o 14Quto ) (G 2S) NV

‘J?J — f(Qsho)| < 253557
on some set &, C &, where P(E7 ) = o(1). For all J > J; we have

F(Quho = ho)| < Ol = b} < CLI™" < CL(F) ™"

< C’OL7'3+ \/Jo logn/n,
0

where in the last inequality we used the definition of J;" = inf{J € J : J > Jo}.
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Hence, we conclude for all J > J; that

‘J/C}O - J?J‘ < (Cy + 257 (3}02\/J0 logn/n + 8}2\/Jlogn/n> vV 1/v/n.

Due to Lemma C.3 it holds s;? < (1 + 7)23,? for some 1 € (0,1), uniformly for
J € Zn{J > Jo}, on some set &, with P(E,) = o(1). Consequently, on &,1 N &y
it holds

| Fao — F1] < (Co+25%)(1 +n)? (3:702\/% logn/n +/872\/J10gn/n> V1/vn
= (Co+28%)(1+ ) (Vo) + V(1)

uniformly for J € ZN{J > Jy}. We conclude that J, € J on En1 N Eyo and
P(gn,l N (‘:n’Q) — 1. ]
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