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We consider the problem of estimating the value ¢(p) of a linear functional,
where the structural function ¢ models a nonparametric relationship in pres-
ence of instrumental variables. We propose a plug-in estimator which is based
on a dimension reduction technique and additional thresholding. It is shown
that this estimator is consistent and can attain the minimax optimal rate of
convergence under additional regularity conditions. This, however, requires an
optimal choice of the dimension parameter m depending on certain characteris-
tics of the structural function ¢ and the joint distribution of the regressor and
the instrument, which are unknown in practice. We propose a fully data driven
choice of m which combines model selection and Lepski’s method. We show
that the adaptive estimator attains the optimal rate of convergence up to a log-
arithmic factor. The theory in this paper is illustrated by considering classical
smoothness assumptions and we discuss examples such as pointwise estimation
or estimation of averages of the structural function .
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1. Introduction

We consider estimation of the value of a linear functional of the structural function ¢ in
a nonparametric instrumental regression model. The structural function characterizes the
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dependency of a response Y on the variation of an explanatory random variable Z by
Y=9p(Z)+U with E[U|Z]#0 (1.1a)

for some error term U. In other words, the structural function equals not the conditional
mean function of Y given Z. In this model, however, a sample from (Y, Z, W) is available,
where W is a random variable, an instrument, such that

E[U|W] = 0. (1.1b)

Given some a-priori knowledge on the unknown structural function ¢, captured by a function
class F, its estimation has been intensively discussed in the literature. In contrast, in
this paper we are interested in estimating the value ¢(¢) of a continuous linear functional
{: F — R. Important examples discussed in this paper are weighted average derivatives
or point evaluation functionals which are both continuous under appropriate conditions on
F. We establish a lower bound of the maximal mean squared error for estimating ¢(y)
over a wide range of classes F and functionals . As a step towards adaptive estimation,
we propose in this paper a plug-in estimator of ¢(p) which is consistent and minimax
optimal. This estimator is based on a linear Galerkin approach which involves the choice
of a dimension parameter. We present a method for choosing this parameter in a data
driven way combining model selection and Lepski’s method. Moreover, it is shown that the
adaptive estimator can attain the minimax optimal rate of convergence within a logarithmic
factor.

Model (1.1a—1.1b) has been introduced first by Florens [2003] and Newey and Powell [2003],
while its identification has been studied e.g. in Carrasco et al. [2007], Darolles et al. [2011],
and Florens et al. [2011]. It is interesting to note that recent applications and extensions
of this approach include nonparametric tests of exogeneity (Blundell and Horowitz [2007]),
quantile regression models (Horowitz and Lee [2007]), or semiparametric modeling (Florens
et al. [2012]) to name but a few. For example, Ai and Chen [2003], Blundell et al. [2007],
Chen and Reifl [2011] or Newey and Powell [2003] consider sieve minimum distance esti-
mators of ¢, while Darolles et al. [2011], Hall and Horowitz [2005], Gagliardini and Scaillet
[2012] or Florens et al. [2011] study penalized least squares estimators. A linear Galerkin
approach to construct an estimator of ¢ coming from the inverse problem community (c.f.
Efromovich and Koltchinskii [2001] or Hoffmann and Reif8 [2008]) has been proposed by
Johannes and Schwarz [2010]. But estimating the structural function ¢ as a whole involves
the inversion of the conditional expectation operator of Z given W and generally leads to an
ill-posed inverse problem (c.f. Newey and Powell [2003] or Florens [2003]). This essentially
implies that all proposed estimators have under reasonable assumptions very poor rates of
convergence. In contrast, it might be possible to estimate certain local features of ¢, such
as the value of a linear functional at the usual parametric rate of convergence.

The nonparametric estimation of linear functionals from Gaussian white noise observations
is a subject of considerable literature (c.f. Speckman [1979], Li [1982] or Ibragimov and
Has’minskii [1984] in case of direct observations, while in case of indirect observations we
refer to Donoho and Low [1992], Donoho [1994] or Goldenshluger and Pereverzev [2000]).
However, nonparametric instrumental regression is in general not a Gaussian white noise
model. Moreover, this model involves the additional difficulty of dealing with an unknown
operator. On the other hand, in the former setting the parametric estimation of linear
functionals has been addressed in recent years in the econometrics literature. To be more
precise, under restrictive conditions on the linear functional ¢ and the joint distribution of



(Z,W) it is shown in Ai and Chen [2007], Santos [2011], and Severini and Tripathi [2012]
that it is possible to construct n'/2-consistent estimators of ¢ (¢). In this situation, efficiency
bounds are derived by Ai and Chen [2007] and, when ¢ is not necessarily identified, by
Severini and Tripathi [2012]. We show below, however, that n'/2_consistency is not possible
for a wide range of linear functionals ¢ and joint distributions of (Z, W).

In this paper, we establish a minimax theory for the nonparametric estimation of the value
of a linear functional £(p) of the structural function ¢. For this purpose, we consider a
plug-in estimator ¢, := £(,,) of £(¢), where the estimator @,, was proposed by Johannes
and SchwarzA[QOIO] and the integer m denotes a dimension to be chosen appropriately. The
accuracy of £,, is measured by its maximal mean squared error uniformly over the classes
F and P, where P captures conditions on the unknown joint distribution Pyzw of the
random vector (U, Z, W), i.e., Pyzw € P. The class F reflects prior information on the
structural function ¢, e.g., its level of smoothness, and will be constructed flexible enough
to characterize, in particular, differentiable or analytic functions. On the other hand, the
condition Pyzw € P specifies amongst others some mapping properties of the conditional
expectation operator of Z given W implying a certain decay of its singular values. The
construction of P allows us to discuss both a polynomial and an exponential decay of those
singular values. Considering the maximal mean squared error over F and P we derive a
lower bound for estimating ¢(yp). Given an optimal choice m} of the dimension we show
that the lower bound is attained by Zm; up to a constant C' > 0, i.e.,

sup sup E |Zm; —Up))* < Cinf sup supE 10— t()]?
Pyzw€P peF { Pyzw€P peF

where the infimum on the right hand side runs over all possible estimators 7 Thereby,
the estimator £,,+ is minimax optimal even though the optimal choice m;, depends on the
classes F and P, which are unknown in practice.

The main issue addressed in this paper is the construction of a data driven selection method
for the dimension parameter which adapts to the unknown classes 7 and P. When esti-
mating the structural function ¢ as a whole, adaptive estimators have been proposed by
Loubes and Marteau [2009], Johannes and Schwarz [2010], and Horowitz [2011]. Johannes
and Schwarz [2010] consider an adaptive estimator based on a model selection approach (cf.
Barron et al. [1999] and its detailed discussion in Massart [2007]) which attains the mini-
max optimal rate. The estimator of Loubes and Marteau [2009] attains this rate within a
logarithmic term. Both papers crucially rely on the a-priori knowledge of the eigenfunctions
which yields an orthogonal series estimator involving the estimated singular values of the
conditional expectation operator. In econometric applications, however, the eigenfunctions
of this operator are unknown. Recently, Horowitz [2011] proposed an adaptive estimation
procedure which is based on minimizing the asymptotic integrated mean-square error and
does not involve the knowledge of the eigenfunctions of the operator.

For estimating linear functionals of the structural function ¢, adaptive estimation proce-
dures are not yet available. We propose a new method that is different from the above,
does not involve a-priori knowledge of the eigenfunctions of the operator, and allows for a
polynomial or exponential decay of its singular values. The methodology combines a model
selection approach and Lepski’s method (cf. Lepski [1990]). It is inspired by the recent
work of Goldenshluger and Lepski [2011]. To be more precise, the adaptive choice m is



defined as the minimizer of a random penalized contrast criterion !, i.e.,

—

M := arg min {\Tfm + ﬁm} (1.2a)
1<m<M,
with random integer M,, and random penalty sequence pen := (pen,,)m>1, to be defined
below, and the sequence of contrast ¥ := (¥,,)n>1 given by

T, = max_ {|Zm, —z?m|2—1ﬁm,}. (1.2b)

m<m’/<M,

With this adaptive choice m at hand the estimator Zm is shown to be minimax optimal
within a logarithmic factor over a wide range of classes F and P. The appearance of the
logarithmic factor within the rate is a known fact in the context of local estimation. Brown
and Low [1996] show that it is unavoidable in the context of non-parametric Gaussian
regression and, hence it is widely considered as an acceptable price for adaptation. This
factor is also present in the work of Goldenshluger and Pereverzev [2000] where Lepski’s
method is applied in the presence of indirect Gaussian observations.

The paper is organized as follows. In Section 2, we introduce our basic model assumptions
and derive a lower bound for estimating the value of a linear functional in nonparametric
instrumental regression. In Section 3, we show consistency of the proposed estimator first
and second that it attains the lower bound up to a constant. We illustrate the general
results by considering classical smoothness assumptions. The applicability of these results
is demonstrated by various examples such as the estimation of the structural function at
a point, of its average or of its weighted average derivative. In section 4 we construct the
random upper bound M,, and the random penalty sequence pen used in (1.2a-1.2b) to
define the data driven selection procedure for the dimension parameter m. The proposed
adaptive estimator is shown to attain the lower bound within a logarithmic factor. Finally,
Section 5 presents the results of a Monte Carlo Simulation study to illustrate the finite
sample properties of our adaptive estimation procedure. All proofs can be found in the
appendix.

2. Complexity of functional estimation: a lower bound.

2.1. Notations and basic model assumptions.

The nonparametric instrumental regression model (1.1a-1.1b) leads to a Fredholm equation
of the first kind. To be more precise, let us introduce the conditional expectation operator
T¢ = Elp(Z)|W] mapping L} = {6 : E[p*(Z)] < oo} to L3, = {¢ : E[2(W)] <
oo} (which are endowed with the usual inner products (-,-), and (:,-)},, respectively).
Consequently, model (1.1a-1.1b) can be written as

g=Ty (2.1)

where the function g := E[Y|W] belongs to L%,. In what follows we always assume that
there exists a unique solution ¢ € L2Z of equation (2.1), i.e., g belongs to the range of T', and
that the null space of T is trivial (c.f. Engl et al. [2000] or Carrasco et al. [2007] in the special

'For a sequence (am )m>1 having a minimal value in A C N set arg min{a,,} := min{m : am < a,¥m’ € A}.
meA



case of nonparametric instrumental regression). Estimation of the structural function ¢ is
thus linked with the inversion of the operator T'. Moreover, we suppose throughout the
paper that 7' is compact which is under fairly mild assumptions satisfied (c.f. Carrasco
et al. [2007]). Note that the proof of minimax optimality of our estimator does not rely on
this assumption but it is used for the illustrations and remarks below. If T" is compact then
a continuous generalized inverse of T" does not exist as long as the range of the operator 7' is
an infinite dimensional subspace of L%,V. This corresponds to the setup of ill-posed inverse
problems.

In this section, we show that the obtainable accuracy of any estimator of the value ¢(p)
of a linear functional can be essentially determined by regularity conditions imposed on
the structural function ¢ and the conditional expectation operator T'. In this paper, these
conditions are characterized by different weighted norms in LQZ with respect to a pre-specified
orthonormal basis {e;};>1 in L%, which we formalize now. Given a positive sequence of
weights w := (w;);j>1 we define the weighted norm ||¢||2, := > js1 wil{e, ej)z|?, ¢ € L%, the
completion F,, of L7, with respect to [-||,, and the ellipsoid F}, := {¢ € Fy, : ||9]|2, < 7}
with radius r > 0. We shall stress that the basis {e;};>1 does not necessarily correspond
to the eigenfunctions of T*T where T™ denotes the adjoint operator of T'. In the following
we write a, < b, when there exists a generic constant C' > 0 such that a, < Cb, for
sufficiently large n € N and a,, ~ b, when a,, < b, and b,, < a, simultaneously.

Minimal regularity conditions. Given a nondecreasing sequence of weights v := (;);>1,
we suppose, here and subsequently, that the structural function ¢ belongs to the ellipsoid F%
for some p > 0. The ellipsoid F4 captures all the prior information (such as smoothness)
about the unknown structural function ¢. Observe that the dual space of F, can be
identified with F,, where 1/v := ('y;l)j>1 (cf. Krein and Petunin [1966]). To be more
precise, for all ¢ € F, the value (h,¢)z is well defined for all h € F/, and by Riesz’s
Theorem there exists a unique h € Fy/, such that {(¢) = (h,¢)z =: lp($). In certain
applications one might not only be interested in the performance of an estimation procedure
of ¢,(p) for a given representer h, but also for h varying over the ellipsoid F] with radius
7 > 0 for a nonnegative sequence w := (wj);>1 satisfying inf;>1{w;vy;} > 0. Obviously, F,
is a subset of F /..

Furthermore, as usual in the context of inverse problems, we specify some mapping prop-
erties of the operator under consideration. Denote by 7T the set of all compact operators
mapping LQZ into lexv- Given a sequence of weights v := (v;)j>1 and d > 1 we define the
subset 7" of T by

Ti={TeT: |ol2/d<|Tol} <dlol?, voe L3} (22)

Notice first that any operator T € 7T is injective if the sequence v is strictly positive.
Furthermore, for all T € 7} it follows that v;/d < ||Te;||%, < dvj for all j > 1. If
(sj)j>1 denotes the ordered sequence of singular values of T" then it can be seen that v;/d <
5? < dvj. In other words, the sequence v specifies the decay of the singular values of T'.
In what follows, all the results are derived under regularity conditions on the structural
function ¢ and the conditional expectation operator T described through the sequence
~v and v, respectively. We provide illustrations of these conditions below by assuming a
“regular decay” of these sequences. The next assumption summarizes our minimal regularity
conditions on these sequences.



ASSUMPTION 1. Let v := (7j)j>1, w = (wj)j>1 and v = (vj)j>1 be strictly positive se-
quences of weights with y1 = w1 = vy = 1 such that v is nondecreasing with |j|37j_1 =o0(1)
as j — 00, w satisfies inf;j>1{w;v;} > 0 and v is a nonincreasing sequence.

REMARK 2.1. We illustrate Assumption 1 for typical choices of v and v usually studied
in the literature (c.f. Hall and Horowitz [2005], Chen and Reifl [2011] or Johannes et al.
[2011]). Let [h]; be the j-th generalized Fourier coefficient, i.e., [h]; := E[h(Z)e;(Z)], then
we consider the cases
(pp) 7 ~ [4]* with p > 3/2, vj ~ [j|7**, a > 0, and

(i) [AF ~ i7", s>1/2—por

(ii) wj ~ |j1*, s > —p.
(pe) vj ~ 3%, p > 3/2 and v; ~ exp(—|j|**), a > 0, and

(i) [AF ~ i7", s>1/2—por

(ii) wj ~ [5]*, s > —p.
(ep) j ~ exp([j|*), p > 0 and v; ~ [j]7*, a >0, and

(i) [P} ~1j|7*, s eRor

(i) wj ~ [4]*, s € R.
Note that condition | j\?”yj_ 1= 0(1) as j — oo is automatically satisfied for all p > 0 in case
of (ep). In the other two cases this condition states under classical smoothness assumptions
that, roughly speaking, the structural function ¢ has to be differentiable. Note that Hall

and Horowitz [2005], who only consider the polynomial case, assume 2p + 1 > 2a > p with
p > 0 and a > 1/2 which is more restrictive than Assumption 1 for a > 2. O

We shall see that the minimax optimal rate is determined by the sequence R" := (R}),>1,
in case of a fixed representer h, and R¥ := (R¥),>1 in case of a representer varying over
the class . These sequences are given for all x > 1 by

R A S PEL e : 23
b o300 Y S0 Ry map e (b 9
7j=1 J>my

where o, := max {vm;%;l , x_l}. This corresponds to the usual variance and bias decom-
position of the mean square error. Here the dimension parameter mJ is chosen to trade off
both, that is, we let for z > 1

v
m,, = arg min {‘m - x_l‘}. (2.4)
meN Tm
In case of adaptive estimation the rate of convergence is given by Rgdapt = (RZ (14logn)~1 Yn>1

and R:dapt = (Rz(l—&-logn)—l)”?l’ respectively. For ease of notation let mg := m:(l+logn)_1
and o = O‘:(l Hogn)—1* The bounds established below need the following additional as-

sumption, which is satisfied in all cases considered in Remark 2.1.
ASSUMPTION 2. There exists a constant 0 < k < 1 such that for alln > 1
1 Umgy, 1

k< 5 <K (2.5)
my




Assumption 2 implies that nvm;’y;zl is uniformly bounded from above and away from zero.
Thereby, we can write nvms ~ Yms .

2.2. Lower bounds.

The results derived below involve assumptions on the conditional moments of the random
variables U given W, captured by U,, which contains all conditional distributions of U given
W, denoted by Py, satisfying E[U|[W] = 0 and E[U*|W] < ¢* for some o > 0. The next
assertion gives a lower bound for the mean squared error of any estimator when estimating
the value £}, (¢) of a linear functional with given representer h and structural function ¢ in
the function class F%.

THEOREM 2.1. Assume an #d. n-sample of (Y,Z,W) from the model (1.1a-1.1b). Let ~y
and v be sequences satisfying Assumptions 1 and 2. Suppose that sup;-, E[e?(Z)]W] <t

n>1, and c* > (\/g—i- 4pn? Zj>1 ’yj_l)Q. Then for all n > 1 we have

o 1
inf sup sup sup E|{—£,(p)* = ® min (, p> RI
¢ TeTy Pyyw€Us peFh 4 2d

where the first infimum runs over all possible estimators 13

Note that in Theorem 2.1 and in the following results the marginal distributions of Z and
W are kept fixed while only the dependency structure of the joint distribution of (Z, W)
and of (U, Z, W) is allowed to vary.

REMARK 2.2. In the proof of the lower bound we consider a test problem based on two hypo-
thetical structural functions. For each test function the condition 0% > (\/§—|—4p n? Z];l 7]71)2
ensures a certain complexity of the hypothetical model in a sense that it allows for Gaus-
sian residuals. This specific case is only needed to simplify the calculation of the distance
between distributions corresponding to different structural functions. A similar assumption
has been used by Chen and Reif} [2011] in order to derive a lower bound for the estimation
of the structural function ¢ itself. In particular, the authors show that in opposite to the
present work an one-dimensional subproblem is not sufficient to describe the full difficulty
in estimating .

On the other hand, below we derive an upper bound assuming that Py belongs to U, and
that the joint distribution of (Z, W) fulfills in addition Assumption 3. Obviously in this
situation Theorem 2.1 provides a lower bound for any estimator as long as o is sufficiently
large. O

REMARK 2.3. The regularity conditions imposed on the structural function ¢ and the con-
ditional expectation operator T' involve only the basis {e;};>1 in L%. Therefore, the lower
bound derived in Theorem 2.1 does not capture the influence of the basis {f;};>1 in L,
used below to construct an estimator of the value ¢;,(¢). In other words, this estimator
attains the lower bound only if {f;};>1 is chosen appropriately. O

REMARK 2.4. The rate R" of the lower bound is never faster than the V/n-rate, that is,
R > n~l. Moreover, it is easily seen that the lower bound rate is parametric if and
only if Zj>1[h}?v;1 < o0o. This condition does not involve the sequence v and hence,
attaining a y/n-rate is independent of the regularity conditions imposed on the structural
function. Moreover, due to the link condition 7' € 7; we have that Picard’s condition



Zj>1[h]§vj-_l < oo is equivalent to h belonging to the range R(T™), where T™ denotes
the adjoint of T'. Note that Severini and Tripathi [2010] showed in their Lemma 4.1 that
h € R(T*) is necessary to obtain y/n-estimability. Under appropriate conditions on ¢ and
the joint distribution of (Y, Z, W) we show in the next section that h € R(T*) is also

sufficient for y/n-estimability. O

The following assertion gives a lower bound over the ellipsoid F of representer. Consider
the function h* := ijil/er* with j* := arg maxlgjgmz{(wjvj)_l} which obviously belongs
to FJ. Corollary 2.2 follows then by calculating the value of the lower bound in Theorem
2.1 for the specific representer h* and, hence we omit its proof.

COROLLARY 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then for allm > 1 we
have

o K 1
inf sup  sup sup  E|0—ly(p)]? > ™ in <, p) Ry
¢ TeTY Puyw€Us 0eFY, heF], 4 2d

where the first infimum runs over all possible estimators /.

REMARK 2.5. If the lower bound given in Corollary 2.2 tends to zero then (w;v;);j>1 is a
divergent sequence. In other words, without any additional restriction on ¢, that is, v =1,
consistency of an estimator of ¢ () uniformly over all ¢ € Fy and all h € F], is only
possible under restrictions on the representer h in the sense that w has to be a divergent
sequence. ]

3. Minimax optimal estimation.

3.1. Estimation by dimension reduction and thresholding.

In addition to the basis {e;};>1 in L% used to establish the lower bound we consider now
also a second basis {f;};>1 in L%,

Matrix and operator notations. Given m > 1, &,, and F,,, denote the subspace of LZZ and
L%/V spanned by the functions {ej};-":l and {f;}]", respectively. E,, and E#l (resp. Fy, and
F:-) denote the orthogonal projections on &,, (resp. F,) and its orthogonal complement
& (resp. Fii), respectively. Given an operator K from L% to L%, we denote its inverse
by K~! and its adjoint by K*. If we restrict F}, K FE,, to an operator from &,, to F,, then
it can be represented by a matrix [K],, with entries [K|;; = (Kej, fi)yw for 1 < j,1 < m.
Its spectral norm is denoted by ||[K]|l, its inverse by [K],,} and its transposed by [K]L,.
We write I for the identity operator and V., for the diagonal operator with singular value
decomposition {vj,e;, fj};>1. Respectively, given functions ¢ € L2Z and ¥ € LIZ/V we define
by [¢]m and [¢],, m-dimensional vectors with entries [¢]; = (¢, e;) 7 and [¢]; = (¢, fi)w for
1 <5, <m.

Consider the conditional expectation operator 1" associated with (Z, W). If [e(Z)], and
[f(W)]m denote random vectors with entries e;(Z) and f;(W), 1 < j < m, respectively,
then it holds [T, = E {[f(W)]mle(2)]%,}. Throughout the paper [T, is assumed to be
nonsingular for all m > 1, so that [T];,! always exists. Note that it is a nontrivial problem
to determine when such an assumption holds (cf. Efromovich and Koltchinskii [2001] and

references therein).



Definition of the estimator. Let (Y1, 2, W1),...,(Y,, Z,, W,) be aniid. sample of (Y, Z, W).
Since [T]m = E{[f(W)]nle(2)],,} and [g]lm = E{Y[f(W)]m} we construct estimators by

m
using their empirical counterparts, that is,

Z )]tm and  [g]m : Z Yilf

Then the estimator of the linear functional ¢ () is defined for all m > 1 by

\3
3\*~

o WPl Gl i [Tl is nonsingular and [Tl < v, o
1o, otherwise. '

In fact, the estimator Zm is obtained from the linear functional ¢;(¢) by replacing the
unknown structural function ¢ by an estimator proposed by Johannes and Schwarz [2010].

REMARK 3.1. If Z is continuously distributed one might be also interested in estimating
the Value f = ¢(2)h(z)dz where Z is the support of Z. Assume that this integral and also
[zh 2 z)dz for 1 < j < m are well defined. Then we can cover the problem of estimating
[z (= ( )dz by simply replacing [h],, in the definition of Km by a m-dimensional vector
with entries [z h(2)ej(z)dz for 1 < j < m. Hence for [ ¢(2)h(z)dz the results below follow
mutatis mutandis. O

Note that the orthonormal bases {e;};>1 in L% and {f;};>1 in L%, depend on the marginal
distributions of Z and W. As we illustrate in the following remark, these marginals are
not needed to be completely known in advance as long as they satisfy additional regularity
conditions.

REMARK 3.2. Without loss of generahty assume that the support of Z and W is confined to
[0,1] and denote L2 01 = {o: fo $%(2)dz < oo}. If one assumes in addition that L[0 3 C L%
and L2 C L[2 1] then it is possible to consider the restriction of T' onto L . Note that
this condltlon is satisfied if the density of Z is bounded from above and the den81ty of W
is uniformly bounded away from zero. For a detailed discussion we refer to a preliminary
version of Darolles et al. [2011] or Section 2.2 of Florens et al. [2012]. Further, let {e;};>1

and {f;};>1 be orthonormal bases in L[0 g In this case, (E[e;(Z)fj(W)])ji>1 is the matrix

representation of the restricted operator T¢ fo 2)pzw(z,-)dz on L[20,1] where pzw
denotes the joint density of (Z, W). Moreover, due to Remark 3.1 the estimator of ¢(¢) in
this situation coincides with the estimator ¢,, given in (3.1) and hence, the results below
follow similarly. O

Moment assumptions. Besides the link condition (2.2) for the conditional expectation
operator 1" we need moment conditions on the basis, more specific, on the random variables
ej(Z) and fi(W) for j,1 > 1, which we summarize in the next assumption.

ASSUMPTION 3. There exists n > 1 such that the joint distribution of (Z, W) satisfies
(i) sup;en E[e5(Z2)|W] <0 and supiey E[f (W)] < n*;

(ii) sup; en Ele;(Z) il W) — Ele;(Z) iW)I* <"kl k=3,4,....



Note that condition (é¢) is also known as Cramer’s condition, which is sufficient to obtain
an exponential bound for large deviations of the centered random variable e;(Z) f;(W) —
Ele;(Z) fi(W)] (c.f. Bosq [1998]). Moreover, any joint distribution of (Z, W) satisfies As-
sumption 3 for sufficiently large 7 if the basis {e;};>1 and {f;};>1 are uniformly bounded,
which holds, for example, for the trigonometric basis considered in Subsection 3.4.

3.2. Consistency.

Ihe next assertion summarizes sufficient conditions to ensure consistency of the estimator
¢, introduced in (3.1). Let us introduce the function ¢, € &, which is uniquely defined
by the vector of coefficients [¢m]m = [T],'[9lm and [p]; = 0 for j > m + 1. Obviously, up
to the threshold, the estimator lzn is the empirical counterpart of ¢, (¢n,). In Proposition
3.1 consistency of the estimator ¢, is only obtained under the condition

lp = mlly = o(1) as m — o0 (3.2)

which does not hold true in general. Obviously (3.2) implies the convergence of ¢}, (¢p,) to
(1 () as m tends to infinity for all h € F .

PROPOSITION 3.1. Assume an id. n-sample of (Y, Z, W) from the model (1.1a-1.1b) with
Pyyw € Uy and joint distribution of (Z,W) fulfilling Assumption 3. Let the dimension
parameter my, satisfy m,; "t = o(1), my, = o(n),

1], [Th II* = 0(n), and miy|[[T]5,,* = O(n) as n — co. (3-3)

mn

If (3.2) holds true then E \Zmn — U (@)]* = o(1) as n — oo for all o € Fy and h € Fy,.

Notice that condition (3.2) also involves the basis {f;};>1 in L%,. In what follows, we
introduce an alternative but stronger condition to guarantee (3.2) which extends the link
condition (2.2). We denote by 4p for some D > d the subset of 7, given by

Tip = {T € 7, : [T)mis nonsingular and H[Vv]lm/z[T]ilHQ < D for all m > 1}. (3.4)

REMARK 3.3. If T" € 7 and if in addition its singular value decomposition is given by
{sj,ej, fj}j>1 then for all m > 1 the matrix [T7],, is diagonalized with diagonal entries
[T),; = sj, 1 < j < m. In this situation it is easily seen that supmGNH[Vu]lmﬁ[T]ilH2 <d

and, hence T satisfies the extended link condition (3.4), that is, " € 7. Furthermore,

it holds 7; = T;p for suitable D > 0, if T" is a small perturbation of V}/ 2 orif T is
strictly positive (c.f. Efromovich and Koltchinskii [2001] or Cardot and Johannes [2010],
respectively). O

REMARK 3.4. Once both basis {e;};>1 and {f;};>1 are specified the extended link condition
(3.4) restricts the class of joint distributions of (Z, W) such that (3.2) holds true. Moreover,
under (3.4) the estimator @y, of ¢ proposed by Johannes and Schwarz [2010] can attain the
minimax optimal rate. In this sense, given a joint distribution of (Z, W) a basis { fi}i>1
satisfying condition (3.4) can be interpreted as optimal instruments (c.f. Newey [1990]). O

REMARK 3.5. For each pre-specified basis {e;};>1 we can theoretically construct a basis
{fi}i>1 such that (3.4) is equivalent to the link condition (2.2). To be more precise, if
T € T}, which involves only the basis {e;};>1, then the fundamental inequality of Heinz
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[1951] implies ||(T*T)~/%¢;|% < dvj_l. Thereby, the function (T*T)~'/2¢; is an element
of L and, hence f; := T(T*T)~"2e;, j > 1, belongs to L¥,. Then it is easily checked
that {f;};>1 is a basis of the closure of the range of 7" which may be completed to a basis
of L?,. Obviously [T],, is symmetric and moreover, strictly positive since (Te;, fi)w =
<(T*T)1/26j, er)z for all j,1 > 1. Thereby, we can apply Lemma A.3 in Cardot and Johannes
[2010] which gives T} = de for sufficiently large D. We are currently exploring the data
driven choice of the basis {f;};>1. O

Under the extended link condition (3.4) the next assertion summarizes sufficient conditions
to ensure consistency.

COROLLARY 3.2. The conclusion of Proposition 3.1 still holds true without imposing con-
dition (3.2), if the sequence v satisfies Assumption 1, the conditional expectation operator
T belongs to T, and (3.3) is substituted by

Z[h]?vj_l =o(n) and m>=O0(nvy,) asn— oco. (3.5)
j=1

3.3. An upper bound.

The last assertions show that the estimator ¢, defined in (3.1) is consistent for all structural
functions and representers belonging to F, and F ., respectively. The following theorem
provides now an upper bound if ¢ belongs to an ellipsoid 4. In this situation the rate RN
of the lower bound given in Theorem 2.1 provides up to a constant also an upper bound
of the estimator /,,x. Thus we have proved that the rate R" is optimal and, hence Ly is
minimax optimal.

THEOREM 3.3. Assume an iid. n-sample of (Y,Z,W) from the model (1.1a—1.1b) with
joint distribution of (Z, W) fulfilling Assumption 3. Let Assumptions 1 and 2 be satisfied.
Suppose that the dimension parameter m, given by (2.4) satisfies

(m)* max { | 1og RE|, (log ;) } = 0y ), a5 m = ox, (3.6)
then we have for alln > 1

sup  sup  sup E |l — lu(p)]* < CR!
TGE?D PU‘WEZ/{O- goe]:f;

for a constant C > 0 only depending on the classes F, 7}”D, the constants o, n and the
representer h.

The next result gives sufficient conditions for y/n-estimability of ¢5(¢). The next corollary
is a direct consequence of Theorem 3.3 and Remark 2.4, hence its proof is omitted.

COROLLARY 3.4. Let the assumptions of Theorem 8.3 be satisfied. If in addition h € R(T*)
then we have for alln > 1

sup  sup  sup E |l — lu(p)> <Cn7!
TeTy p Pujw €Us peFy

where C is as in Theorem 3.5.
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REMARK 3.6. The last result together with Remark 2.4 established equivalence between
condition h € R(T*) and /n-estimability of ¢;(¢) under appropriate conditions on ¢ and
the joint distribution of (Y, Z, W) (as conjectured in Chapter 4, Remark (ii) of Severini
and Tripathi [2010]). As illustrated in the next subsection, depending on the severeness
of the ill-posedness /n-estimability could not be possible even for smooth functionals. In
the polynomial case (pp), condition h € R(T™) holds true only if s > a + 1/2. In case of
(ep), h € R(T*) only if the representer h is analytic. In contrast to our framework, the
estimation procedure of Santos [2011] crucially relies on condition h € R(7™) which implies
the existence of a function ¥ € L%, such that £,(¢) = E[Y9(W)]. O

The following assertion states an upper bound uniformly over the class F] of representer.
Observe that HhH%M < 7 and R < 1) maxicjcm: {(wjv;) 71} = 7R for all h € FJ.
Employing these estimates the proof of the next result follows line by line the proof of
Theorem 3.3 and is thus omitted.

COROLLARY 3.5. Let the assumptions of Theorem 3.3 be satisfied where we substitute con-
dition (3.6) by (m})3 max {|log R¥|, (log m})} = o(Ymz) as n — co. Then we have

sup  sup sup  E|lps — lh(p)|* <CRY
TeTyp Puiw €Us e FY, heF]

or a constant C > 0 only depending on the classes FL, F., TV, and the constants o, 1.
Y w d,D

3.4. lllustration by classical smoothness assumptions.

Let us illustrate our general results by considering classical smoothness assumptions. To
simplify the presentation we follow Hall and Horowitz [2005], and suppose that the marginal
distribution of the scalar regressor Z and the scalar instrument W are uniformly distributed
on the interval [0, 1]. All the results below can be easily extended to the multivariate case.
In the univariate case, however, both Hilbert spaces LQZ and LIZ/V equal LQ[O, 1]. Moreover,
as a basis {e;};>1 in L?[0,1] we choose the trigonometric basis given by

e1 =1, eg(t) := V2cos(2mjt), e211(t) := V2sin(2mjt),t € [0,1], j € N.

In this subsection also the second basis {f;};>1 is given by the trigonometric basis. In this
situation, the moment conditions formalized in Assumption 3 are automatically fulfilled.
Recall the typical choices of the sequences v, w, and v introduced in Remark 2.1. If
vj ~ 3%, p > 0, as in case (pp) and (pe), then F, coincides with the Sobolev space of
p-times differential periodic functions (c.f. Neubauer [1988a,b]). In case of (ep) it is well
known that F., contains only analytic functions if p > 1(c.f. Kawata [1972]). Furthermore,
we consider two special cases describing a “regular decay” of the unknown singular values
of T. In case of (pp) and (ep) we consider a polynomial decay of the sequence v. Easy
calculus shows that any operator T satisfying the link condition (2.2) acts like integrating
(a)-times and hence is called finitely smoothing (c.f. Natterer [1984]). In case of (pe)
we consider an exponential decay of v and it can easily be seen that 7' € 7, implies
R(T) C C*°[0, 1], therefore the operator T is called infinitely smoothing (c.f. Mair [1994]).
In the next assertion we present the order of sequences R" and R which were shown to be
minimax-optimal.

PROPOSITION 3.6. Assume an iid. n-sample of (Y, Z, W) from the model (1.1a—1.1b) with
T e 7}7’D and Pyyw € Uy. Then for the example configurations of Remark 2.1 we obtain
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(pp) mj, ~ !/ T2 and
n—(2p—|—2$—1)/(2]3—|—2a)7 if s—a< 1/2’
(i) R ~{ n~llogn, ifs—a=1/2,
n~t, otherwise,

(ii) RY ~ max(n~(+s)/(ta) p=1)
(pe) mz ~ log(n(logn) P/*)1/(20) gnd
(i) R ~ (logn)=@pt2s—1)/(2a)
(ii) RS ~ (logn)~@+)/a,
(ep) m: ~ log(n(logn)~*/P)/(2P) and

“llogn)Ra—2st1)/Cr)  if s —a < 1/2,
(i) RE~ < n~1log(logn), if s—a=1/2,

n~t, otherwise,

(i) RY ~ max(n~'(logn)@=*)/P n=1),

REMARK 3.7. As we see from Proposition 3.6, if the value of a increases the obtainable
optimal rate of convergence decreases. Therefore, the parameter a is often called degree of
ill-posedness (c.f. Natterer [1984]). On the other hand, an increasing of the value p or s
leads to a faster optimal rate. Moreover, in the cases (pp) and (ep) the parametric rate n !
is obtained independent of the smoothness assumption imposed on the structural function ¢
(however, p > 3/2 is needed) if the representer is smoother than the degree of ill-posedness
of T, ie., (i) s > a—1/2 and (ii) s > a. Moreover, it is easily seen that if [h]; ~ exp(—|j|®)
or w; ~ exp(|7|**), s > 0, then the minimax convergence rates are always parametric for
any polynomial sequences v and wv. O

REMARK 3.8. It is of interest to compare our results with those of Hall and Horowitz [2005]
or Chen and Reiss [2008] who consider the estimation of the structural function as a whole.
In the notations of Hall and Horowitz [2005], who consider only the case (pp), the decay
of the eigenvalues of T*T is assumed to be of order j~¢, that is, a = 2a¢ with a > 1.
Furthermore, they suppose a decay of the coefficients of the structural function of order
jB, that is, 8 =p + 1/2 with 8 > 1/2. By using this parametrization, Hall and Horowitz
[2005] obtain in the case (pp) the minimax rate of convergence n~2P/(24+2p+1) (see also
Chen and Reiff [2011]). Let us compare this rate when estimating ¢ at a point ty € [0, 1]
(cf. Example 3.1). Here, we have s = 0 and hence, obtain the minimax rate of convergence
n~(r=1)/(a+2p) -~ Roughly speaking, one looses 1 /2 of smoothness, which corresponds to
the loss of smoothness of Sobolev embeddings in Holder spaces. For any representer h with
2s > (2a+1)/(2a + 2p + 1), however, the rate of convergence for estimating ¢(y) in the
case (pp) is faster than estimating ¢ as a whole. O

EXAMPLE 3.1. Suppose we are interested in estimating the value o(tg) of the structural
function ¢ evaluated at a point ¢ty € [0,1]. Consider the representer given by hs;, =
> i1 ej(to)ej. Let p € Fy. Since ).y 'yj_l < oo (cf. Assumption 1) it holds h € F; /., and
hence the point evaluation functional in ¢ € [0,1], i.e., £y, (¢) = ¢(to), is well defined. In
this case, the estimator {,, introduced in (3.1) writes for all m > 1 as

~ le(to))L T [@lm,  if [T]m is nonsingular and ||[T],.!]| < v/,

Pulta) i= O ml Wl ¥ e

0, otherwise
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where @, is an estimator proposed by Johannes and Schwarz [2010]. Let p > 3/2 and
a > 0. Then the estimator @y, (to) attains within a constant the minimax optimal rate of
convergence R™o. Applying Proposition 3.6 gives

(pp) R0 n—(20=1)/(2p+2a)

(ep) R0 ~ (logn)~(2=1)/(2a),
(ep) R ~ n~Y(logn)e+D)/(2p). .

ExaMpPLE 3.2. We want to estimate the average value of the structural function ¢ over
a certain interval [0,b] with 0 < b < 1. The linear functional of interest is given by
lh(p) = f(f ¢(t)dt with representer h := 1jg;). Its Fourier coefficients are given by [h]1 = b,
[h]2; = (V2mj) 1 sin(27jb), [hlaj+1 = —(V2mj) "t cos(2mjb) for j > 1 and, hence [h]? ~j2
Again we assume that p > 3/2 and a > 0. Then the mean squared error of the estimator
Zm;; = fob @mz (t)dt is bounded up to a constant by the minimax rate of convergence R In
the three cases the order of RZ is given by

n~@PHD/Cpt20) - if g > 1/2,
(pp) Rip~ < ntlogn, if a =1/2,

n~t, otherwise,

(ep) R% ~ (log n)*(2p+1)/(2a)’

n~(logn)2e=1/Cr)  if g > 1/2,
(ep) RE ~ ¢ n~llog(logn), ifa=1/2,
n-t, otherwise.

As in the direct regression model where the average value of the regression function can
be estimated with rate n~! we obtain the parametric rate in the case of (pp) and (ep) if
a<1/2. O

ExamMpLE 3.3. Consider estimation of the weighted average derivative of the structural
function ¢ with weight function H, i.e., fol ¢'(t)H (t)dt. This functional is useful not only
for estimating scaled coefficients of an index model, but also to quantify the average slope of
structural functions. Assume that the weight function H is continuously differentiable and
vanishes at the boundary of the support of Z, i.e., H(0) = H(1) = 0. Integration by parts
gives fol () H(t)dt = — fol o(t)h(t)dt = —lr(p) with representer h given by the derivative
of H. The weighted average derivative estimator Zm; = — fol Oz (t)h(t)dt is minimax
optimal. As an illustration consider the specific weight function H(t) = 1 — (2t — 1)? with
derivative h(t) = 4(1 —2t) for 0 < ¢t < 1. It is easily seen that the Fourier coefficients of the
representer h are [h]; = 0, [h]a; = 0, [h]2j4+1 = 4v2(mj) ! for j > 1 and, thus [h]%j+1 ~j2
Thus, for the particular choice of the weight function H the estimator ?m; attains up to a
constant the optimal rate R”, which was already specified in Example 3.2. O

4. Adaptive estimation

In this section, we derive an adaptive estimation procedure for the value of the linear
function £y (¢). This procedure is based on the estimator ¢z given in (3.1) with dimension
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parameter m selected as a minimizer of the data driven penalized contrast criterion (1.2a—
1.2b). The selection criterion (1.2a—1.2b) involves the random upper bound M, and the
random penalty sequence pen which we introduce below. We show that the estimator Zﬁ
attains the minimax rate of convergence within a logarithmic term. Moreover, we illustrate
the cost due to adaption by considering classical smoothness assumptions.

In an intermediate step we do not consider the estimation of unknown quantities in the
penalty function. Let us therefore consider a deterministic upper bound M, and a deter-
ministic penalty sequence pen := (pen,,)m>1, which is nondecreasing. These quantities are
constructed such that they can be easily estimated in a second step. As an adaptive choice
m of the dimension parameter m we propose the minimizer of a penalized contrast criterion,
that is,

m := arg min {¥,, + pen,, } (4.1a)
1<m<M,

where the random sequence of contrast W := (¥,,),,>1 is defined by

7 72
U, = Jnax {\ﬁm/ — U |” — penm,}. (4.1b)
The fundamental idea to establish an appropriate upper bound for the risk of Zm is given by

the following reduction scheme. Let us denote m Am’ := min(m,m’). Due to the definition
of ¥ and m we deduce for all 1 < m < M,

B = ()2 < 3185 = Tl + nom — Bl + 1B — () |
< 3{% + peng, + ¥z + pen,, +| b, — €h<90)!2}
< 6{W,, + pen,,} + 3|l — £n(0)[?

where the right hand side does not depend on the adaptive choice m. Since the penalty
sequence pen is nondecreasing we obtain

m<m/ <M 6 m<m/ <M,

~ 1
U, <6 max (wm/ — (o) = penm/) +3 max | (om — om)|?
+

where (-); denotes the positive part of a function. Combining the last estimate with the
previous reduction scheme yields for all 1 < m < M,

|Z% — lh(@)* < Tpen,, +78bias,, +42 max <|Zm/ — (o) |? — 1penm,) (4.2)
m<m/<M 6 +
where bias,, := Sup,,i>m|lh(@m — ©)|2. We will prove below that pen,, + bias,, is of the
order RZ(l Hlogn)~1" Moreover, we will bound the right hand side term appropriately with
the help of Bernstein’s inequality.
Let us now introduce the upper bound M, and sequence of penalty pen,, used in the
penalized contrast criterion (4.1a—4.1b). In the following, assume without loss of generality

that [h]y # 0.
DEFINITION 4.1. For alln > 1 let a, := n'~1/108C+en) (1 L 1ogn) =1 and MP := max{1 <

m < [n'/4] lgﬁ}fn[h]? < n[h]?} then we define

M,, := min {2 <m < M m3|[T]H max (k)2 > an} 1
- 1ggsm
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where we set M, := M if the min runs over an empty set. Thus, M, takes values between
1 and M} Let 2, = TA(E[Y?] + maxi<p<m | [T] 5 [9)m?), then we define

pen,, :=24¢2 (1 +logn)n™' max ||[A]%, [T] 1 (4.3)
1<m’<m - =
To apply Bernstein’s inequality we need another assumption regarding the error term U.

This is captured by the set U3° for some o > 0, which contains all conditional distributions
Pyw such that E[U|W] = 0, E[U?|W] < 02, and Cramer’s condition hold, i.e.,

E[|UFIW] < o® k!, k=34,....

Moreover, besides Assumption 3 we need the following Cramer condition which is in par-
ticular satisfied if the basis {f;};>1 are uniformly bounded.

ASSUMPTION 4. There exists 1 = 1 such that the distribution of W' satisfies
sup; ien E |f; (W) W) = E[f;(W) W)I[* <" k!, k= 3.4,....

We now present an upper bound for Zm As Goldenshluger and Pereverzev [2000] we face a
logarithmic loss due to the adaptation.

THEOREM 4.1. Assume an iid. n-sample of (Y,Z, W) from the model (1.1a—1.1b) with
E[Y?] > 0. Let Assumptions 1—4 be satisfied. Suppose that (mg,)® maxi<j<ms [h]? = 0(anvUme)
as n — oo. Then we have for alln > 1

7. 2 h
sup  sup  sup E[lz — (h(9)]” < CRy (1 410gm)-1
T€7:i’lfD PU‘WGZ/{(?O spef,f;

for a constant C > 0 only depending on the classes FY, 7:11;]3, the constants o, n and the
representer h.

REMARK 4.1. In all examples studied below the condition (m)? maxi<j<me [h]]2 = o(anvme )
as n tends to infinity is satisfied if the structural function ¢ is sufficiently smooth. More
precisely, in case of (pp) it suffices to assume 3 < 2p + 2min(0, s). On the other hand, in
case of (pe) or (ep) this condition is automatically fulfilled. O

In the following definition we introduce empirical versions of the integer M,, and the penalty
sequence pen. Thereby, we complete the data driven penalized contrast criterion (1.2a—
1.2b). This allows for a completely data driven selection method. For this purpose, we
construct an estimator for ¢2, by replacing the unknown quantities by their empirical analog,
that is,

n
2= Ta(n V2 4 max (T ).
=1

1<m’<m

With the nondecreasing sequence (2,),>1 at hand we only need to replace the matrix [T,
by its empirical counterpart (cf. Subsection 3.1).

DEFINITION 4.2. Let a,, and M be as in Definition 4.1 then for all n > 1 define

—~

M,, := min {2 <m< M m?’H[f]ilHQ max [h]? > an} -1

1<g<m
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where we set ]/\4\” := M if the min runs over an empty set. Thus, ]\/Zn takes values between
1 and Mff Then we introduce for all m > 1 an empirical analog of pen,, by

pet,,, :=204¢% (1 +logn)n™" max |[[h], [T/ (4.4)

1<m/<m

Before we establish the next upper bound we introduce

M} := min {2 <m <M vhm3 max [h]? > 4Dan} -1 (4.5)

1<j<m

where M+ := M" if the min runs over an empty set. Thus, M takes values between 1 and
Mff As in the partial adaptive case we attain the minimax rate of convergence R" within
a logarithmic term.

THEOREM 4.2. Let the assumptions of Theorem 4.1 be satisfied. Additionally suppose that
(M;f +1)%logn = O(nUMﬁ[-s-l) asn — oo and sup;>; E lej(Z)|?2° < n?°. Then for alln >1
we have

sup  sup  sup E |z — lu(p)|* < CRZ(l—Hogn)—l
TE’YZED PU‘WEUO.OO (pG]-—fy)

for a constant C > 0 only depending on the classes F, 737’]3, the constants o, n and the

representer h.

REMARK 4.2. Note that below in all examples illustrating Theorem 4.2 the condition (M, +
1)2logn = o(nvy+ 1) as n tends to infinity is automatically satisfied. O

As in the case of minimax optimal estimation we now present an upper bound uniformly
over the class F], of representer. For this purpose define M¥ := max{l < m < |n'/*] :
maxlgjgm(wj_l) < n}. In the definition of the bounds M, M,F, and M, (cf. Appendix 4)

we replace M/ and maxlgjgm[hE by My and maxi<j<mw;

j
by employing A2 Jy ST and RI < 7RY for all h € F7, the next result follows line by line

the proof of Theorem 4.2 and hence its proof is omitted.

, respectively. Consequently,

COROLLARY 4.3. Under the conditions of Theorem 4.2 we have for alln > 1

N 2
sup sup sup  E |z — (@) <C RZ(l—Hog n)~1
TeTY p Puyw UG e Fh  heFF,

where the constant C > 0 depends on the parameter spaces F4, F, T{p, and the constants

o, n.

lllustration by classical smoothness assumptions. Let us illustrate the cost due to adap-
tion by considering classical smoothness assumptions as discussed in Subsection 3.4. In
Theorem 4.2 and Corollary 4.3, respectively, we have seen that the adaptive estimator Zm
attains within a constant the rates Rgdapt and Ridapt- Let us now present the orders of
these rates by considering the example configurations of Remark 2.1. The proof of the

following result is omitted because of the analogy with the proof of Proposition 3.6.

PROPOSITION 4.4. Assume an id. n-sample of (Y, Z, W) from the model (1.1a-1.1b) with
conditional expectation operator T € 7}7’D, error term U such that Py € UZ°, and
E[Y?2] > 0. Then for the example configurations of Remark 2.1 we obtain
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(pp) if in addition 3 < 2p + 2min(s,0) that mg ~ (n(l + log n)*l)l/(zpﬂa) and

(n= (1 4 logn))@pt2s—1)/Cp+2a) = yf s g < 1/2
(i) R aogmy1 ~ {7 (1 +logn)?, if s —a=1/2

n~1(1+logn), if s—a>1/2,
(i) R1 {1ogn)—1 ~ MAX ((n=(1 + logn))P+s)/(P+a) n=1(1 4 logn)).

(pe) m, ~ log (n(1 + logn)~(@+)/a)/?* 4pq
() RZ(l-‘y—logn)—l ~ (1+log n)*(2p+25*1)/(2a)7
(ii) R

(1t1ogm) 1 ~ (L +logn)~ @/,

(ep) mg, ~ log (n(1 + log n)—(a—‘,—p)/p) V2w

n~ (1 + logn)2et2p=2s+D/Cp) - if 5 — g < 1/2
(i) RZ(l—Hogn)_l ~ < n~Y(1 +logn)(loglogn), ifs—a=1/2

n~1(1+logn), if s—a>1/2,
(ii) R (14logn)—1 ™~ Max (n~*(logn) atp=9)/p n=1(1 + logn)).

Let us revisit Examples 3.1 and 3.2. In the following, we apply the general theory to adaptive
pointwise estimation and adaptive estimation of averages of the structural function .

ExampLE 4.1. Consider the point evaluation functional ¢4, () = ¢(to), to € [0,1], intro-

duced in Example 3.1. In this case, the estimator Z,’ﬁ with dimension parameter m selected
as a minimizer of criterion (1.2a—1.2b) writes as

~ [e(to)]fﬁ[f];nl [Glm,  if [T]; is nonsingular and H[f];}“ <V,
Pim(to) := me e - n
0, otherwise

where @, is an estimator proposed by Johannes and Schwarz [2010]. Then @z (to) attains

within a constant the rate of convergence Radapt Applying Proposition 4.4 gives

(pp) th((i+logn)71 ~ (n7(1 +log n))(2p_1)/(2p+2”)

9

(P) Ry 1ogny-s ~ (1 -+ logm)~Gr=0/(20),

(eD) Rl s 1ogmy1 ~ 1 (1 + logn)Gat2r1/Cr), -

EXAMPLE 4.2. Consider the linear functional ¢ (¢ fo ¢(t)dt with representer h := 1y
introduced in Example 3.2. The mean squared error of the estimator Z = fo Om(t)dt is

bounded up to a constant by Radapt Applying Proposition 4.4 gives

(n~Y(1 + logn))@P+D/@p+20) - if ¢ > 1/,
(pp) RZ(l+logn)—1 ~ n- ( + lOg n)27 ifa= 1/27
n~1(1 + logn), otherwise,

(ep) Rz(l+logn)*1 ~ (1+log n)_(2p+1)/(20)’
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n (1 4 logn)2et2p=1/Cp)  if ¢ > 1/2,
(ep) ,R’Z(H—logn)*1 ~ n_l(l + log n)(log log n), ifa=1/2,
n~ (1 + logn), otherwise.

5. Monte Carlo experiments.

In this section, we examine the finite sample properties of our estimation procedure. We
study first the point evaluation functional and thereafter, an average of the structural func-
tion. As in Subsection 3.4, we consider the case where Z and W are both scalar and {e;};>1
and { f;};>1 coincide with the trigonometric basis. Moreover, we generate the joint density of
(Z,W) by the multivariate function pzw (2, w) = Cyle(2)]% ([[]k + Ar) [Vv]i/z[f(w)]ﬁ where
(), is a normalization constant, (v;);>1 is a nondecreasing sequence which is specified below,
and k = 100. Here, Ay is a randomly generated k x k matrix with spectral norm 1/2. Due
to the construction of the joint density pzw the link condition T" € 7 is satisfied for all
¢ € &. Note that if Ay equals the zero matrix then this would correspond to the situation
where the eigenfunctions of T' coincide with the bases {e;};>1 and {fi};>1. We generate
samples of size n = 1000 using the relationship ¥ = E[p(Z)|W]+ V where V ~ N(0,0.01).
The number of Monte Carlo replications is 1000.

In particular, we want to study the performance of our estimators in finite samples when
the dimension parameter m is chosen by our adaptive procedure given in (1.2a-1.2b). The
constants in the definition of the adaptive procedure, though suitable for the theory, may
be chosen much smaller in practice. Here, we replace in definition of pen (given in (4.4))
and ¢2, the constants 204 and 74 by 5 and 1, respectively. In addition, we adjust the upper
bound M in the following way. We replace ay, (given in Definition 4.1) by 40 n(1+1logn)~1.

Point wise estimation Let us consider the problem of pointwise estimation of p(z) =
10 22 sin(7 z) for z € [0,1] over an equidistantly spaced grid of length 50. We truncate
its infinite dimensional vector of coefficients at a sufficiently large integer, say 100. In
Figure 1, we compare the performance of the estimators with optimal parameter m} (in
the first column) and data driven parameter m (in the second column). More precisely,
at each point to of the grid we choose m;) as the minimizer of the empirical mean of
\Zm — Ly, (¢)|>. The first row represents (pp) with v; = 5! while the second depicts (pe)
with v; = exp(—j). In case of (pp), the pointwise 95%—confidence bands are sufficiently
tight to make significant statements about the curvature of ¢. Not surprisingly, in case of
(pe) the pointwise confidence bands are much wider. But also in this case the pointwise
median of the adaptive estimators is very close to .
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Figure 1: The green solid, black dashed, and blue dotted lines show ¢, point-wise median
of the estimators, and their 95% estimation band.

Estimation of averages We now consider the estimation of averages of the structural func-
tion. In the following, we consider the structural function p(z) = 2;101 (—1)71j72¢;(2). We
consider the problem of estimating the value of the linear functional f00’75 o(z)dz ~ 0.898.
The empirical means from a Monte Carlo simulation are displayed in Table 1. Here, we

choose m;, as the minimizer if the empirical mean of |Zm - 00'75 ¢(z)dz|*. From Table 1 we

see that the difference of the empirical means of \Zmn — U (¢)|? and |Zm —l(¢)]? are small.
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Model Sample Size Empirical mean of

v; oz — Ca(9)[? |7, — L ()2
! 200 0.0218 0.0202
1000 0.0058 0.0070
G2 200 0.0784 0.0770
1000 0.0317 0.0300
j3 200 0.1295 0.1404
1000 0.0931 0.1058
g4 200 0.1462 0.1533
1000 0.1288 0.1462
exp(—j) 200 0.0627 0.0619
1000 0.0214 0.0313
exp(—2j) 200 0.1275 0.1479
1000 0.1080 0.1362
exp(—=3j) 200 0.1521 0.1555
1000 0.1341 0.1538

Table 1: Results of Monte Carlo Simulations

A. Appendix

A.1. Proof of the lower bound given in Section 2.

1/2 mx
PROOF OF THEOREM 2.1. Define the function ¢, := (M) > [h]jvj_lej with
2 ], Jj=1

¢ := min(1/(2d), p). Since (’yj._lvj)j>1 is nonincreasing and by using the definition of x
given in (2.5) it follows that ¢, and in particular ¢y = Op, for § € {—1,1} belong to
FL. Let V be a Gaussian random variable with mean zero and variance one (V ~ N(0,1))
which is independent of (Z, W). Consider Uy := [Tpp|(W)—py(Z)+V, then Py, belongs
to U, for all o > (V3 +4p dois1 7]717)2)2, which can be realized as follows. Obviously,
we have E[Up|W] = 0. Moreover, we have sup, E[e?(Z)\W] < n* implies E[pg(2)|W] <
P (52175 ) Eled(2)W] < pPn'(E07;")? and thus, |[Te)(W)[* < Elph(2)|W] <
p2n4(2j21 7;1)2. From the last two bounds we deduce E[Uj|W] < 16 E[ps(Z)|W] +
6 Var(pg(Z2)[W) +3 < (V3 + 4pn? > i1 7;1)2. Consequently, for each 6 iid. copies
(Yi, Z;, W), 1 < i < m, of (Y,Z,W) with Y := ¢y(Z) + Up form an n-sample of the
model (1.1a—1.1b) and we denote their joint distribution by Py and by Ey the expectation
with respect to Py. In case of Py the conditional distribution of Y given W is Gaussian
with mean [T'py|(W) and variance 1. The log-likelihood of P; with respect to P_; is given

tog () = S0 2(¥i — [T@J(W)Toul (W) + 3 2A[Tp] W)
4 i=1
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Since T' € T the Kullback-Leibler divergence satisfies K L(Py, P_1) < Ei[log(dPy/dP-1)] =
2n||To. %, < 2nd||@s]|2. Tt is well known that the Hellinger distance H(P;, P—1) satisfies
H?(P;, P_1) < KL(P;, P_1) and thus, employing again the definition of x we have

my, my 2 *
2 E: 2 CKO& [h]j B K Oy,
J=1 l 1 J=1

Consider the Hellinger affinity p(Py, P_1) = [ y/dP1dP_; then for any estimator 7 it holds

1 — (1) \5 Uh(p

1)l
A/ dP1dP_q
21n ()] 20 n ()] '

[0 tu(p))” ,, \ 12 16— 4 (p-1)[? 1/2
< </4|€h&0*)1‘2dpl> +</MdP—1) - (A.2)

Due to the identity p(Py, P-1) =1 — 1H?(P;, P_;) combining (A.1) with (A.2) yields

p(Pr,P_1) < dPydP_; +

y y 1
E € = th(p0)]? + By [0~ bp(p-)” > Qlfh(sﬂ*)l2- (A.3)

*

Obviously, |[0n(v:)]? = (kal i[h]?vj_l From (A.3) together with the last identity we
j=1

conclude for any possible estimator /

sup  sup sup E|f—0,(0)2 > sup Eg |l — 0y(o")2

TEE?D PU‘WEZ/IO 506.7'—5 06{71’1}
1 o v
> 5{1[*31 10— (1) + By |0 — eh(w—l)\Q}
K . * - 2 *1
> min (g00) a2 5™ (a4

1/2
Consider now @, := (W) Z [h]ﬂj ej, which belongs to 7 since £ < 1 and
mn Jj>my

¢ < p. Moreover, since ('yj_lvj)j>1 is nonincreasing and by using the definition of x given
n (2.5) we have

2nd Y [Gf2v; = 2n ¢ T Z < 2ndC

jome I>my (A j>me 7] VW%Um;

- <2d¢< L

Thereby, following line by line the proof of (A.4) we obtain for any possible estimator 7

o 1 - K 1 _
sup sup sup B~ £u()]” > {6(@) = min (de) > W
TeTY b Poyw €U peFY j>mi

Combining, the last estimate and (A.4) implies the result of the theorem, which completes
the proof. O
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A.2. Proofs of Section 3.

We begin by defining and recalling notations to be used in the proofs of this section. For
m > 1 recall g, = Y700 [om]je; with [pm]m = [T, [9]m keeping in mind that [T]y, is
nonsingular. Then the identities [T'(¢ — @m)lm = 0 and [¢m — Em@lm = [T T Em@lm

hold true. We denote Qu, := [Ty — [Tl and Vin := [Glm — [Tlm|@mlm = 1 327, (Ui +
o(Z;) — om(Zi))[f (Wi)]m, where obviously E V,,, = 0. Moreover, let us introduce the events

m = {ITR N < VAt U= {v/mlQulll[T]5 I < 1/2}
o= (I > vy and O5 = (V| QullIITIRH > 1/2}.

Observe that if /m||Qum|||[T],5' | < 1/2 then the identity [T = [T) {1 +[T],,' Qm} implies

by the usual Neumann series argument that ||[7]; | < 2|[T],.H]. Thereby, if /n > 2[|[T],,!]
we have U,, C ©,,. These results will be used below without further reference. We shall
prove at the end of this section four technical Lemmata (A.1 — A.4) which are used in the
following proofs. Furthermore, we will denote by C' universal numerical constants and by
C'(+) constants depending only on the arguments. In both cases, the values of the constants
may change from line to line.

Proof of the consistency.

ProOOF OF PrROPOSITION 3.1. Consider for all m > 1 the decomposition

E [l — h(0)> = E [l — 0n(0)? 1a,, 101 (0)|>P(2S,)
< 2E |l — lh(om)|? Loy, 210 (0m — @)|° + [€h ()P P(Q5,)  (A.5)

where we bound each term separately. Let Gy, := {||Quml|||[T],' || < 1/2} and let U, denote

its complement. By employing H[f]ilH g, < 2||[T], || and H[f]ilHQ 1g,, < n it follows
that

(O = (om) P T, < 2| W) T)s! Vin|” + 2| [Pl [T] Qo[ Ty Vi 10, (15, + 1)
< 2\[h]tm[ﬂzvmrmu[h]tm[T@ | {4||[T@ P12 1Vial + 2l Qual 1 Vi 155, }-

Thus, from estimate (A.9), (A.10), and (A.11) in Lemma A.1 we infer

E [l — th(om)* 1a,, < COOn~H[R[T15 10" (0% + e — ¢ml3)
m3 _

< {1+ TR + mP P e (A6)
Let m = m, satisfying m,' = o(1), m, = o(n), and condition (3.3). We have /n >
2||[T),,L || and thus, QF, C ﬁfnn for n sufficiently large. From Lemma A.3 it follows that
mi2P(0,, ) < 2exp { —my (320* 0~ m, 3|71 [|2) ! + 141log my, } = O(1) as n — oo since
my (4n=tm3|| [T]@HQ)*1 < 4nn for n sufficiently large. Thus, in particular P(Q5, ) = o(1).
K WP =

Consequently, as n — oo we obtain E \Zmn — U (Ym,)|? 1@,,, = o(1) since ||[A]t, o Ll

o(n). Moreover, as n — oo it holds |[¢5(¢m,) — Ch(0)|* < [|Bll1/5]le — @mally = o(1) due
to condition (3.2), and [£,()|*P(9, ) < [|kll1/4]l¢lly P2, ) = o(1). This together with
decomposition (A.5) proves the result. O
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PrROOF OF COROLLARY 3.2. The assertion follows directly from Proposition 3.1, it only
remains to check conditions (3.2) and (3.3). We make use of decomposition ||¢ — ¢y <
|EE@lly + | Em® — @mlly- As in the proof of Lemma A.2 we conclude ||E,,p — emll? <
| E5 0|1y sup,, Sup||¢H7:1||T7§1FmTE#1¢||7 < Dd||Ej¢|y. By using Lebesgue’s dominated
convergence theorem we observe || Er-¢ll, = o(1) as m — oo and hence (3.2) holds. Condi-
tion T' € Ty, implies ||[h]L,[T], 17 < D Y270, [hl5v; 7! and [[[T],'1* < Duy,! for all m > 1
since v is nonincreasing. Thereby, condition (3.5) implies condition (3.3), which completes
the proof. O

Proof of the upper bound.

PrROOF OF THEOREM 3.3. The proof is based on inequality (A.5). Applying estimate
(A.14) in Lemma A.2 gives |0y (om — ¢)|* < 20{2j>m[h]]2'7j_1 + Dd v, Z;ﬁ:l[h]?vj_l
for all ¢ € Ff and h € Fy .. Since |[€(¢)]* < H(pH,QYHhH%/,Y and [¢||2 < p we conclude

E |6m — th()* < 2E £ — ta(om) | 10,

_ U < _ .
+4p{§:[h]§7j1+d97 §:[hﬁuj1}+p|!hH§MP(Qm). (A7)

j>m
By employing HQm[f]élHQ 1, <m~! and H[f]ﬁlHQ lq,, < n it follows that
[ — (o) L, < 21T Vial® + 2 [[R] (T11 1P Vi
+ 20| [R5 715 P 1 Q[ Vil s, -

Due to T' € T/ and ¢ € FL we have ||[h]%, [T]5H* < ngn:l[h]?/vj and |[|¢ — <pm||,2y <
2p(1+ Dd) (cf. (A.13) in Lemma A.2), respectively. Thereby, similarly to the proof of
Proposition 3.1 we get

E [l — tu(om) [ 10,, < C)D(o® + n2dDpn~t S [0y {1+ md P(5;,) 1.
j=1
Combining the last estimate with (A.7) yields
E [0 — () < C(7)D(0®+7%dD B2y Um 1) SOt
|6 = r(2)* < C(y)D(0” +ndDp) max { Y [h)}y; ", max " > [l

j>m Jj=1

x {1+ mPP5) ) + pllnl, P(95,). (AS)

Consider now the optimal choice m = m} defined in (2.4), then we have

E (D — (@) < COID{o + p(odD + [h]),) VRE
X {1+ (m) P05, ) + (R P(9,,) |

and hence, the assertion follows by making use of Lemma A.4. O
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Technical assertions.

The following paragraph gathers technical results used in the proofs of Section 3. Below we
consider the set S™ := {s € R™ : ||s|| = 1}.

LEMMA A.1. Suppose that Py € Uy, and that the joint distribution of (Z, W) satisfies
Assumption 3. If in addition ¢ € FY with v satisfying Assumption 1, then for all m > 1
we have

sup E s’ Vio|* < 207" (0% + C() P lle — omll?), (A.9)
seS™

_ 2
E[Vall* < C(y) (n"'mn?(0® + [l — eml3))7, (A.10)
El|Qum® < C (n~tm2n?)". (A.11)

PROOF. Proof of (A.9). Since ({U; + ¢(Zi) — om(Zi)} 2272, 85 f5(Wi)), 1 < i < m, are
iid. with mean zero we have E|s'V,,|> = n'E{U + ©(Z) — om(2)} Py sifi(W)2.
Then (A.9) follows from E[U?|W] < (E[U*W])/? < 02 and from Assumption 3 (i), i.e.,
SUpjen E[eJQ(Z)]W] < n?. Indeed, applying condition |j|37;1 = o(1) (cf. Assumption 1)
gives D ioq 'yj_l < C(v) and thus,

m

E{e(Z2 }ngfg ?< ||90—wmllizvflﬂ?lIez(Z)Zijj(W)l2

j=1

C)n*lle — eml? ZS = C)n’lle — eml.

Proof of (A.10). Observe that for each 1 < j < m, ({Uz + ©o(Zi) — em(Zi)} f;(W3)),
1 <i < n, are iid. with mean zero. It follows from Theorem 2.10 in Petrov [1995] that
E(|V||* < Cn=2m? sup;ey E{U + ¢(Z) — om(Z)}fj(W)|%. Thereby, (A.10) follows from
E[U4W] < o* and sup,cy E[f;l(W)] < n* together with E|{p(Z2) — om(Z)}f;(W)|* <
Cy)ntle — gpmely, which can be realized as follows. Since [T'(¢ — ¢m)]; = 0 we have
[0(2) = (D) = Yol — mli{en(Z) £5(1) — [T];}. Furthermore, Assumption
3 (ii), i.e., sup; ey Ele(2) f;(W) — [T];]* < 4ln*, implies

E[{0(2) ~ en(Z} LN < o — ol E|S v en(2) 1500 — (1,0

>1
< C) e = emlls-
Proof of (A.11). The random variables (e;(Z;)f;(W;) — [T];1), 1 < i < n, are iid. with
mean zero for each 1 < j,1 < m. Hence, Theorem 2.10 in Petrov [1995] implies E||Q,,||® <

Cn*m®sup; e E |e(2) f3(W) — [T ]j7l|8 and thus, the assertion follows from Assumption 3
(ii), which completes the proof. O

LEMMA A.2. IfT € T}, and ¢ € FL, then for all m > 1 we have

|Emp — om|2 < Ddp, (A.12)

lp = emll3 <2(1+ Dd) (A.13)
2
Um ]

|(hy 0 = om)z|” < 2p2—+2Dd Z— (A.14)
ji>m J ] 1 Y
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Proor. Consider (A.12). Since T € 775 the identity [Eme — omlm = — (T3 [T Em@lm
implies || Ep — oml|2 < D|TELp||3 < Dd||ELe||?. Consequently,

1Eme — emll? < Ddy vmllel? (A.15)

because (yj_lvj)j;l is nonincreasing and thus, [|Ene — @ml2 < Ymvy! [|Eme — @mll7. By
combination of the last estimate and (A.15) we obtain the assertion (A.12). By employing
the decomposition ||¢ — @2 < 2||¢ — Emgoﬂg + 2||[Ene — <pm||3/ the bound (A.13) follows
from (A.12) and ||p — EmcpHg < [l¢ll2. Tt remains to show (A.14). Applying the Cauchy-
Schwarz inequality gives |(h, p — E@)z[? < Hcp||2 me[ ]2 “Land |(h, Eme — om)z]? <

Dd o2 vmy,! Z] N ]2 by (A.15). Thereby (A.14) follows from the inequality |(h, p—
om)z|? < 2|(h, Emg0>Z]2 +2/{h, En — om) z|?, which completes the proof. O

LEMMA A.3. Suppose that the joint distribution of (Z, W) satisfies Assumption 3. Then
foralln >1 and m > 1 we have

t
P(m™*n||Quml|* > t) < 2exp (— e +2logm) for all 0 <t < 4nn. (A.16)

Proof. Our proof starts with the observation that for all j,I € N the condition (ii) in
Assumption 3 implies for all £ > 0

n —t2
Pt (A0 ~Eles 20| > ) < 20 gy )

which is just Bernstein’s inequality (cf. Bosq [1998]). This implies for all 0 < ¢ < 2nn

2
supmz{ej Ele;(2) (W)} > ) < 2exp (- —

sup 877%). (A.17)

It is well-known that m™!(|[A],]] < maxi<jicm [[A]j] for any m x m matrix [A],,. Com-
bining the last estimate and (A.17) we obtain for all 0 < t < 2nn'/2

P(m~ 02| Qul > 1) < ZP(\Z j(Z Ele;(2) f(W)])| > n'/2t)
j,l=1
2
< 2exp (— e + 2logm).
O
LEMMA A.4. Under the conditions of Theorem 3.8 we have for all n > 1
(my,) 2 P(U5,. ) < C(v, 0,1, D) (A.18)
(Ry)~'P(Q,:) < C(y,v,m,h, D). (A.19)
PROOF. Proof of (A.18). Since [|[T];,'|* < Dv,,! due to T' € T4 p it follows from Lemma

A.3 for all m,n > 1 that

) 2 Num NUm
P05, < P(m n||Qml|” > 4Dm3) < 2exp ( - m + 210gm>
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since (4Dm3v,,')~1 < 1 < 4n? for all m > 1. Due to condition (3.6) there exists ng > 1
such that nup: > 448Dn*(m},)? logmj, for all n > ng. Consequently, (mfl)wP(Ufn;) <2
for all n > ng, while trivially (m;)HP(U%:) < (m )2 for all n < ng, which gives (A.18)
since ng and my,, depend on v, v, n and D only.

Consider (A.19). Let ng € N such that max{|log R}|, (log m};)}(m})? < nvm: (96Dn?)~!
for all n > ng. Observe that O, C Q, if n > 4Dv,'. Since (m}) " *nvp: > 96Dn? for all
n = ng it follows nuy,: > 4D for all n > ng and hence (RZ)_lP(an;) < (RH7IP(BE,.) <2
for all n > ng as in the proof of (A.18). Combining the last estimate and the elemgntary
inequality (RZ)_lP(Qﬁnz) < (R )= for all n < ng shows (A.19) since ng depends on 7, v,
1, h and D only, which completes the proof. ]

A.3. Proofs of Section 3.4

PROOF OF PROPOSITION 3.6. Proof of (pp). From the definition of m} in (2.4) it follows
m ~ n'/(2p+22)  Consider case (i). The condition s — a < 1/2 implies n~* E;n:"l 720725 ~
n—l(mz)Za—Qs—f—l ~ n—(2p+25—1)/(2p+2a) and moreover, Z]>m* |j|—2p—23 ~ n—(2p+23—1)/(2p+2a)
since p+s > 1/2. If s —a = 1/2 then n~! Z;”an 17]2%=25 ~ n~'log(n'/(?»+29)) and
> jsms |7]72P72% ~ n~!. In the case of s —a > 1/2 it follows that Z;”:"l |7]2¢=2¢ is bounded
whereas » ... |7]727=2 < n~! and hence, R? ~ n~!. To prove (ii) we make use of Corol-
lary 2.2. We observe that if s —a > 0 the sequence wv is bounded from below, and hence
RY ~n~!. Otherwise, the condition s — a < 0 implies RY ~ n~P+s)/(pta),

Proof of (pe). Note that m} satisfies m? ~ log(n(logn)~?/*)'/(29) In order to prove (i),
we calculate that >, . 1| 72P=25 ~ (logn)(~2P—25+1)/(20) and n~1 Z;nznl exp(|52)|5]72% <
(logn)(=2P=25+1)/(29) In case (ii) we immediately obtain RY ~ (logn)~(P+s)/e,

Proof of (ep). It holds true mj ~ log(n(logn)~%?)/P). Consider case (i). If s —
a < 1/2 then n! Z;n:’ll 17120725 ~ n=t(logn)(2e=25tD/(2P) I s — ¢ = 1/2 we conclude
nt Z;nz“l |7]2272% ~ n~'log(log(n)). On the other hand, the condition s —a > 1/2 implies

that Z;rfl 7]2272¢ is bounded and thus, we obtain the parametric rate n=1!.

o 172 exp(—[j[27) < n 7t |22 In case (i) if s —a > 0
then the sequence wv is bounded from below as mentioned above and thus, RY ~ n~!. If
s —a < 0 then R ~ n~'(logn)@=*)/P which completes the proof. O

Moreover, it

is easily seen that )

A.4. Proofs of Section 4

At the end of this section we shall prove six technical Lemmata (A.7 — A.12) which are
used in the following proofs. Let us introduce a nondecreasing sequence A := (Ay,)m>1
and its empirical analog A 1= (Ay)m>1 by Ap == maxicpraml|[Rl, [T],7]1> and A, =

max; <o <m || (A1, [T]-}|?, respectively. Similarly to M;" introduced in (4.5) we define

M, := min {2 <m < M 4Dv'm? max [h]j2 > an} -1 (A.20)

1<jsm

where we set M, := M/ if the set is empty. Thus, M,; takes values between 1 and M. In
the following C > 0 denotes a constant only depending on the classes FY, 7., the constants
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o, n and the representer h. For ease of notation, the value of C > 0 may change from line
to line.

PROOF OF THEOREM 4.1. The proof of the theorem is based on inequality (4.2). Observe
that by Lemma A.10 we have M, < M, < M,’. Due to condition (mj,)? maxi<j<ms [h]5 =
0(anUme) as n — oo there exists ng > 1 only depending on h, v, and v such that for all
n > ng it holds m; < M, . We distinguish in the following the cases n > ng and n < ny.

First, consider n > ng. Applying Corollary A.6 together with estimate (4.2) implies
E\Zm —U(p)]? < C{ pen, o + biasye +n_1}.

From the definition of pen,, we infer pen,, < 24(3p+202)(1+logn)n=1D >l ] cr !since
TeTip Uecls", and ¢ € F% . Moreover, since p € F4 and h € F1/y estlmate (A1 )

Lemma A.2 implies for all 1 < m < M, that bias, < min,_, - 2p { D i [h]? ; 14
dDvy, ! Z}nzl[h]?vj_l .
Consequently,
my
Elfm — ta(@)? < C{max (Y (W7 an YWy ) + 07t
j>ms i=1
Consider now n < ng. Observe that for all 1 < m < M/ it holds

[ = (2)” < 2|[Pi[T] Vinl 1, +2(/0(0m = 9)* + 1 () La,)
< 20|[Pan P IVags 1 + 21 (pm — @)1 + [en(0)* L, (A.21)

From the definition of M we infer ||[h] M |2 < [h]} n°/4. Hence inequality (A.10) in Lemma
A.1, inequality (A.13) in Lemma A.2 and Lemma A.12 yield for all ¢ € F) and h € Fi/y

nE|lm — ta()* < 2[R n®([Vagy |* + 6p][ 1]}, (1 + Dd)n < C,
which proves the result. ]
LEMMA A.5. Consider (pen,,)m>1 with pen,, := 24(24 E[U?]+96n?p m3~,,') (1+logn)n~'.

Then under the conditions of Theorem 4.1 we have for alln > 1

~ 1
sup sup E max <\€m —ly(om)]? — = penm> <cnl.
TETyp PujweUse  m§,<m<M;) 6 +

PROOF. Similarly to the proof of Theorem 3.3 we obtain the decomposition

[ — €1 (pm)I* < 2|[Alf [T] Vinl* + 2m 7 [ [R] [T] 1 Vil P+
20| (] [T) ! @l 1 Vi |1 Tsg, +1€n () s, -
Observe that [|[h]L,[T],,' | < Am for all m > 1 and hence, we have for all m;, < MF
- 1 AT Vinl* pen
b — Lr(om)]* — = <24, = - “
(‘ h(@p )’ 6penm>+ ( ||[h]tm[ ] 1”2 24Am>+

Vill?  pen
ronn (T2l Py o n QP IVal? v, +Hen(om) 10,

= Iy + 11, + 111, + IV,,.
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Consider the first two right hand side terms. We calculate

— M;F
E max (In+1[,)<4 max supE <\sth|2 B penm> Z Ap,.
+m:1

me <m<M;T mo<m<M;T sesm 247,

°<m< M

From the definition of pen we infer for all s € S™ and m}, "

pen,,

nkE (|sth\2 BEYING
m

)+ <2E ((n—1/2 ; Uss'[f(Wi)]m)? — 12E[U?)(1 + log n))+

£ 2E (0772 3 0(021) — o Z))s' [ F(Wi)|m)? — 4807 pmPy! (1 + logm))
=1

< C(oyn,v,p, D)™t

where the last inequality follows from Lemma A.7 and A.8. Due to the definition of M, and
+
since A is nondecreasing we have n= 1M A < D(TLUZ\/[J)A(M,L*)2 max, i+ [h]5 <

4D?. Consequently, Emax, o+ (Im + II,) < Cn~!. Further, we obtain for ¢ € F¥
and h € Fy,

My
B max  (ITIp) <0l (B[1Qu M) VBV, | 2PV (| U5,)
ngmgMﬁL n n n m:1
M;E
< C)nt(o® + (1+ Dd)p)n ™ Ay (M PPV 05,
m=1

where the last inequality is due to Lemma A.1 and
Myt
E max (Vi) <plll, P( | 96)-
o (V) < sllnllP(U 95,

Now applying n‘lAMﬁ (M,;[)? < 4D? and Lemma A.9 gives Emax_, emenst {ITm +1Vi) <
Cn~', which completes the proof. O

COROLLARY A.6. Under the conditions of Theorem 4.1 we have for alln > 1

-~ 1
sup sup E max (\Em —lp(om)]? — = penm> <Cn
TETY ) Pojw €U mg<m<M;t 6 +

Proof. Observe that m37;,} = o(1) and ||¢ — pm||% = o(1) as m — oo due to Assumption 1
and T € T, (cf. proof of Corollary 3.2), respectively. Thereby, there exists a constant ng
only depending on v, p, and 7 such that for all n > ng and m > m; we have

24 E[U%4960°pm®y;,' < T2(E[Y ]+ [lomlZ + o — omllZ) +96n°pmPy,t <o (A.22)

We distinguish in the following the cases n < ng and n > ng. First, consider n < ng. Due
+
ton~! 2%21 A, < 4D? and inequality (A.9) in Lemma A.1 we calculate for all s € S™

M, M}

pen _
> AmE(‘Sth’2_24AZ)+ <Y ARE[S'Vin]? < 8ngD* (02 +C(7) 0 [lp—mll3) n
m=1 m=1
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Therefore, following line by line the proof of Lemma A.5 it is easily seen that it holds
nEmax, o+ (|€m—€h(4pm)|2—% pen,, )+ < C. Consider now n = ng. Inequality (A.22)

implies pen,, < pen,, and thus, (]Zm —lh(om)|? |2 — & pen,, )+

=

- % pen,, )+ < (Mm _Eh(QOm)
for all mg < m < M. Thus, from Lemma A.5 we infer n Emax_, <m<Mt (|€m —Lh(om)

~X
%penm ) 4 S C, which completes the proof of the corollary.
O

PROOF OF THEOREM 4.2. Similarly to the proof of Theorem 4.1 and since pen is a non-
decreasing sequence we have for all 1 <m < M,

- —_— . N 1 —_—
s — n(p)* < pen,, +bias,, + max <|€m/ — ()2 — G penm,>

m<m/ <M,

+

Let us introduce the set

p—

A= {pemm < pen,, < 8pen,,, 1<m< M,T} N{M, < M\n < MY,

n
then we conclude for all 1 < m < M,
) 2 . -~ 2 1
|0 — ln(p)|” 14 < pen,, +bias,, + max [t — Cn(om)|” — = pen,,, | -
m<m/ <M+ 6 +

Thereby, similarly as in the proof of Theorem 4.1 we obtain for all p € F£ and h € F /vy
the upper bound for all n > 1

E|lm — Ch(9)[* 14 < CRE 1 110gm1- (A.23)

Let us now evaluate the risk of the adaptive estimator Zm on A°¢. From the definition of
M we infer ||[h]M;LLH2 < [h)2n M. Consequently, inequality (A.21) together with (A.10)
in Lemma A.1, (A.13) in Lemma A.2 and Lemma A.12 yields for all p € ) and h € Fi/y

E |6n—(0)” Tae < 2[R n” M (E||Vagy )/ PAY) 2 +6pl 13, (14 Dd) P(A) < Cn .

The result follows by combining the last inequality with (A.23). O

Technical assertions.

The following paragraph gathers technical results used in the proofs of Section 4. In the
following we denote &s(w) := > 7%, s; fj(w) where s € §™ = {s € R™ : ||s[| = 1}.

LEMMA A.7. Let Assumptions 8 and 4 hold. Then for alln > 1 and 1 < m < Ln1/4j we
have

sup sup E K%‘ Zn: Ui&s(W;) g 12E[U?](1 + log n))J < C(o,m)nt.
i=1

PU‘WEMO.OO seS™
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Proof. Let us denote § = 12E[U?](1 + logn). Since the error term U satisfies Cramer’s
condition we may apply Bernstein’s inequality and since E[U?|W] < 0% we have

E [(%‘ iUZ{S(Wi) g 6>+|W1, . .,Wn]
=1

- /Ooop(zn:Uigs(Wi) > \/n(t+6)\W1,...,Wn)dt
=1
g/oooexp< —n(t+0) )|2>dt+/oooexp( v n(t+5)Wi)|>dt. (A.24)

802 Z?:l ’55 (WZ 4o maxi<i<n ’gs(

Consider the first summand of (A.24). Let us introduce the set

. e logn
. . 1 (TA: } .
B = {Vl <zpl<m:|n ;1 FiW) W) — 65| < 3\/5}

where ¢;; = 1 if j = [ and zero otherwise. Applying Cauchy-Schwarz’s inequality twice we
observe on B for allm > 1 and 1 < m < M,F

N

=t G =115 < Y faillalln™ Y0 £(Wi) filWi) = 8a] 15 <
i=1 Jl=1 i=1

since n™/4logn < 3/2 for all n > 1. Thereby, it holds n=* 37| |&(W;)|2 15 < 3/2 and
thus,

00 —n(t—|—(5) 9 ) 9

< logn — —— ) < 602

”E[/o e"p(scf?zzlnss(wi)?)dth] 120 exp (logn — 155) < o
(A.25)

On the complement of B observe that sup;; Var(f;(W)fi(W)) < n* due that Assumption 3
(i) and thus, Assumption 4 together with Bernstein’s inequality yields

n

P(B°) < Z P<3\ > HW) AW = 6] > \/ﬁlogn>

jl=1 i=1
n(logn)?
36nn* + 6ny/nlogn

(g

2
< 2m” exp ( — 42774

) < 2exp (2logm—

By Assumption 3 (i) it holds E |£,(W)|* < E | >ty f]?(VV)]2 < m?n*. Thereby

nk [/ooo oxp (52 ig(f E?w»p)dt 15: | < 8o%n(E[6(W0)|'P(B%)"/* < 12077 (A.26)

for all n > exp(1261*) and 1 < m < [n'/4]. Forn < exp(126n?) it holds n E[|&,(W1)|? 15¢] <
exp(126n*). Consider the second summand of (A.24). Since z +— exp(—1/xz), > 0, is a
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concave function and E [£,(W)|* < m2n* we deduce for all 1 < m < |[nl/4]

E <
[/o xp <40' maxigi<n ’fs(Wzﬂ)dt} /0 P (40Emax1<i<n ‘gs(WZ)th

g/oooexp<4 (f n(t+5))1/4>dt</oooexp(nl/4 M)dt

o(nE|&(W)[* o ny/m
46N 1
/4 -1
< 8onym /nexp(40n\/>>< \/+4077\F> C(o,mn™". (A.27)
The assertion follows now by combining inequality (A.24) with (A.25), (A.26), and (A.27).
O

LEMMA A.8. Let Assumptions 1 and 8 hold. Then for allm > 1 and m > 1 we have

3
sup supE[(*’Z Zi))&s(Wi) —48n2p:17(1+10gn))+} < C(n,v,p,D)n"

TETY,, seS™ m

Proof. Let us consider a sequence w := (w )]>1 with w; := j2. Since [T(¢ — ¢m)]m = 0 we
conclude for m > 1, s € S™, and k = 2,3,... that

E|(¢(Z) — om(2))&(W)|* =E| Z[@ — Pmli Z si(el(Z) f;(W) = [T];) "
=1 j=1

<lle = emlnEl Y w ' Y (a(2)f;(W) = [T])**/?
=1 j=1
<l = @mlllm (7 /V6)* sup Elei(2) f;(W) — [T]u/*

JlEN

where due to Assumption 3 (i) sup; ey Var(e/(2) f;(W)) < n? and due to Assumption 3 (ii)
it holds sup; ey E[e)(2) f;(W) — [T 11| < kIn® for k > 3. Moreover, similarly to the proof
of (A.13) in Lemma A.2 we conclude m*/2||p — o, ||F < (m3y,,1)*¥/2(2 + 2Dd)*/2pF/2. Let
us denote i, = 77( + Dd)\/6pm3ym,'. Consequently, for all m > 1 we have E|(¢(Z) —
em(2))E(W)? < pi, and

sup E[(9(Z) — om(2))Es(W)|*F < pf k! for k=3,4,.... (A.28)

ses™m

Now Bernstein’s inequality gives for all m > 1
sup B [( ] Z 2))e (W)

seSm
< 2/OOoexp (W)dt—i—Z/oooexp (W)dt

n(12+ log ”))(4um +/8np2,(1 + logn))

< C(n,7,p, D)n~?

— 82, (1 4+ log n)>+]

< 1642, exp(—logn) + 16pmn /% exp (

and thus, the assertion follows.
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LEMMA A.9. LetT € dp- Then for alln =1 it holds
P( | ) < Clhyv,n,D)n*, (A.29)

P( Lj Q¢) < C(h,v,m,D)n" " (A.30)

Proof. Proof of (A.29). Since T € T/, we have |[[T],,'||* < Duv;,' and thus, exploiting
Lemma A.3 together with the definition of Ml gives

M,
4 M +
P(g Ufn) < 2exp ( )] WAL + 3log M, —|—4logn) < C(h,v,n, D).
Proof of (A.30). Due to the definition of M, there exists some ng > 1 such that n > > 4Dv,

for all n > ng. Thereby, condition T € T”D implies max, .+ [T, al? < DUJTP‘ < n/4

Zn
for all n > ng. This gives U " 198, U " 1 OF, and inequality (A.30) follows by making

use of (A.29). If n < ng then nP( U " 1 80 ) no and the assertion follows since ng only
depends on h, v and D. O

LEMMA A.10. Let T € Ty'p. Then it holds My < M, < Mt for allm > 1

ProoF. Consider M, < M,. If M, =1 or M,, = M} the result is trivial. If M, = 1,
then clearly M, = 1. It remains to consider M,, > 1 and M > M,, > 1. Due to T €

it holds ||[T]]T41n+1||_2 > D~ 'vy, 11 and thus, by the definition of M,, and M, it is easily
seen that

Yn, S 4Up, 41
2(My)? hj3 (M, +1)3’
S ) mM[ b +1)
and thus, M, +1 > M, , ie. M, > M, . Consider M,, < M. If M,, = 1 or M,"

M the result is trivial, Wh1le otherwise since v;,! < ||[T],,']? SUD|| £, =1 |FrnTEmol? <
DI||[T],;'I* due to condition T € T with d < D and by the definition of M, and M, it
follows

UM, Aoy

> .
h2 M} 2(M;f 4+1)3
(S,

Thus, M, +1 > M,, i.e. M;} > M, which completes the proof. O

In the following, we make use of the notation 0% := E[Y?] and 6% := n~' > 1 | Y;2. Further,
let us introduce the events

- {19nIT < 1is <m0+ 0), (A31)
G = {UY ¥ <30% ), (A.32)
- {H[T];fvmn2 < STl +08) v1<m<rt} (A33)
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LEMMA A.11. Let T € dqu. Then it holds HNGNJ C A.

Proof. For all 1 <m < M, observe that condition ||Qum||[|[T],,'|| < 1/4 yields by the usual
Neumann series argument that [|([/]m+Qm[T]5!) ™' — I]m|| < 1/3. Thus, using the identity
[T],.' = [T — [T (({m + Qm[T],5") ! = [{]m) we conclude

m m m

2| (Al 71 | < 3l T] | < 4Rl IT]"

Similarly, we have 2||[T], om| < 3|[[T ] Lo || < 4)|[T] 5 vml| for all v, € R™. Thereby,

since [T],' Vi = [T],,'d]m — [T]} [9]m we conclude

[leamto™
m Gl

[y

(32/9) [T Vi 1* + 20T (9] 1%
(32/9) T VinlI* + 20T, (9] |-

NN

m

On 7 it holds [|[T],,! Vin||* < (I [T, [9]m | +0%). Thereby, the last two inequalities imply

(/NN [9lll* + 0%) < 0% + 21T, [l

1T @l < (22/9) (T [9ll® + (4/9) 0

On G it holds 032/ < 28}2, < 3012/ which gives

(5/9)(I[T] [9)ml® + 0%) < (3/2)5% + 2I|[T],, [,
I[T] @lwll” + 5% < (22/9)[T]," 9] ]l” + (10/9)03-.

Combing the last two inequalities we conclude for all 1 < m < M,F

(5/18) (1T 9l I* + 0% ) < T Glunll® + 3% < (22/9) (I[T] [9)el® + o).

Consequently, we have

HNGNJT C {4Am <9A, <16A, and 562 < 182 <44¢2 V1< m < M,j}
and thus, HNGNJ C {pen,, < pen,, < 18pen,, V1 < m < M, }. Moreover, it holds
H C {M, < M, < M, }, which can be seen as follows. Consider {M,, < M, }. In case of
M, = M} or M,; =1 clearly {M,, < M, } = (). Otherwise by the definition of M,, it holds

My —1
(M, <M} = | {Mn - m} c {32 <m < My mP|[T]N|> max [h)? > an}.

1<gsm

By the definition of M, and the property ||[T],,'[|* < Dv,,! there exists 2 < m < M, such

that on {]\/4\n < M, } it holds ||[T\]£l||2 > 4Dv;t > 4|[T),,H1* and thereby,
(Mo < p7} < {32 <m < vy TP > 4T 1P (A.34)
Consider {J\/J\n > M}, In case of and M, = MM or M, =1 clearly {]\/Jn < M;} =0.

Otherwise, condition T' € 7 with d < D implies v,,,' < DI|[T],,']|* as scen in the proof of
Lemma A.9. Thereby, we conclude similarly as above

{8 >t} < Iyl 0P > T, 1) (4.35)
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Again applying the Neumann series argument we observe
H {V1<m < (] + 1) 271 < BITIL < 4Tl )

which combined with (A.34) and (A.35) yields {M, < M, < M;}}® C H¢ and thus,
completes the proof. O

LEMMA A.12. Under the conditions of Theorem 4.2 we have for all n > 1
nt(MM*P(A%) < C.

Proof. Due to Lemma A.11 it holds n*(M")*P(A°) < n*(MM*{P(H®) + P(J¢) + P(G)}.
Therefore, the assertion follows if the right hand side is bounded by a constant C, which we
prove in the following. Consider H. From condition T' € 7211,}D and Lemma A.3 we infer

1 nu, +

4/ rh4d ¢ M +1 n

MMAP gz(— 1M11><h,,,D

n*(M,;)*P(H®) exp 128D77(Mﬁr+1)2+30g( T +1)+5logn) < C(h,v,n,D)
(A.36)

where the last inequality is due to condition (M, + 1)?logn = o(nvy+ ). Consider G.

Due to condition m3y,,! = o(1) as m — oo and U € US® we observe E[Y*] < 2F(E[¢*(2)] +
E[U*]) < C(v,p,0)sup;=, E[e?(Z)]. Thereby, assumption sup,- E[e?O(Z)} < 7?° together
with Theorem 2.10 in Petrov [1995] imply

n
nt (MDY P(GY) < n°P([63 — 03] > 03/2) < 10240520 E [n ' Y ¥ — 03|
=1
< 10240, E|Y? — 07" < C(v,p,0,n). (A.37)

Consider J. For all m > 1 observe that the centered random variables (Y; — ¢(Z;)) f;(W;),
1 < i < n, satisfy Cramer’s condition (A.28) with pi,, = 1 (1+Dd)/6pm3ym' < C(n, 7, p, D).
From (A.13) in Lemma A.2, € F, and Py € U we infer [ |5 + o0y < 4(2+ Dd)p+
202, Moreover, it holds ||[T];,1V;,||? < Dv;,t||Vin||? by employing condition T € Tip- Now
Bernstein’s inequality yields for all 1 < m < M

nOP ([T Vel > (1715 9l + 03)/3)

<n’ ZP(‘ > (Yi = p(Z0)) £ (Vi) 2
j=1 i=1

n2um,

8Dm

> " (llomll} +03))

n*vmm ! (|leml|% + %) )

<2n6m exp(— 1/2
32Dnp2, + 16pmnum - m=Y2(om % + o3 )1/?

2

< 2exp (7logn —
M;f C(a,n,7, p, D)

Due to the definition of M} the last estimate implies n*(M")*P(7¢) < C, which completes
the proof. O
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